DECIDABLE MODELS OF ω-STABLETHEORIES
We characterize the ω-stable theories all of whosecountable models admit decidable presentations. In particular, we show that fora countable ω-stable T, everycountable model of T admits a decidable presentation if andonly if all n-types in T are recursive andT has only countably many countable model...
Gespeichert in:
Veröffentlicht in: | The Journal of symbolic logic 2014-03, Vol.79 (1), p.186-192 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 186 |
container_title | The Journal of symbolic logic |
container_volume | 79 |
creator | Andrews, Uri |
description | We characterize the ω-stable theories all of whosecountable models admit decidable presentations. In particular, we show that fora countable ω-stable T, everycountable model of T admits a decidable presentation if andonly if all n-types in T are recursive andT has only countably many countable models. We furthercharacterize the decidable models of ω-stabletheories with countably many countable models as those which realize onlyrecursive types. |
doi_str_mv | 10.1017/jsl.2013.2 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2787279105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787279105</sourcerecordid><originalsourceid>FETCH-proquest_journals_27872791053</originalsourceid><addsrcrecordid>eNpjYBAyNNAzNDA0188qztEzMjA01jNiYuA0tDQx1jW1sDBjYeA0MDAy0jWxMDTiYOAqLs4yMDAwtTSx4GRQdXF19nRxdPJxVfD1d3H1CVbwd1M436kbHAISC_Fw9Q_ydA3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MLcyNzS0MDU2PiVAEAXVgxUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787279105</pqid></control><display><type>article</type><title>DECIDABLE MODELS OF ω-STABLETHEORIES</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>Andrews, Uri</creator><creatorcontrib>Andrews, Uri</creatorcontrib><description>We characterize the ω-stable theories all of whosecountable models admit decidable presentations. In particular, we show that fora countable ω-stable T, everycountable model of T admits a decidable presentation if andonly if all n-types in T are recursive andT has only countably many countable models. We furthercharacterize the decidable models of ω-stabletheories with countably many countable models as those which realize onlyrecursive types.</description><identifier>ISSN: 0022-4812</identifier><identifier>EISSN: 1943-5886</identifier><identifier>DOI: 10.1017/jsl.2013.2</identifier><language>eng</language><publisher>Pasadena: Cambridge University Press</publisher><subject>Logic ; Mathematics ; Philosophy ; Realism</subject><ispartof>The Journal of symbolic logic, 2014-03, Vol.79 (1), p.186-192</ispartof><rights>Copyright © Association for Symbolic Logic 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Andrews, Uri</creatorcontrib><title>DECIDABLE MODELS OF ω-STABLETHEORIES</title><title>The Journal of symbolic logic</title><description>We characterize the ω-stable theories all of whosecountable models admit decidable presentations. In particular, we show that fora countable ω-stable T, everycountable model of T admits a decidable presentation if andonly if all n-types in T are recursive andT has only countably many countable models. We furthercharacterize the decidable models of ω-stabletheories with countably many countable models as those which realize onlyrecursive types.</description><subject>Logic</subject><subject>Mathematics</subject><subject>Philosophy</subject><subject>Realism</subject><issn>0022-4812</issn><issn>1943-5886</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpjYBAyNNAzNDA0188qztEzMjA01jNiYuA0tDQx1jW1sDBjYeA0MDAy0jWxMDTiYOAqLs4yMDAwtTSx4GRQdXF19nRxdPJxVfD1d3H1CVbwd1M436kbHAISC_Fw9Q_ydA3mYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4I3MLcyNzS0MDU2PiVAEAXVgxUg</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Andrews, Uri</creator><general>Cambridge University Press</general><scope>AABKS</scope><scope>ABSDQ</scope></search><sort><creationdate>20140301</creationdate><title>DECIDABLE MODELS OF ω-STABLETHEORIES</title><author>Andrews, Uri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27872791053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Logic</topic><topic>Mathematics</topic><topic>Philosophy</topic><topic>Realism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrews, Uri</creatorcontrib><collection>Philosophy Collection</collection><collection>Philosophy Database</collection><jtitle>The Journal of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrews, Uri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DECIDABLE MODELS OF ω-STABLETHEORIES</atitle><jtitle>The Journal of symbolic logic</jtitle><date>2014-03-01</date><risdate>2014</risdate><volume>79</volume><issue>1</issue><spage>186</spage><epage>192</epage><pages>186-192</pages><issn>0022-4812</issn><eissn>1943-5886</eissn><abstract>We characterize the ω-stable theories all of whosecountable models admit decidable presentations. In particular, we show that fora countable ω-stable T, everycountable model of T admits a decidable presentation if andonly if all n-types in T are recursive andT has only countably many countable models. We furthercharacterize the decidable models of ω-stabletheories with countably many countable models as those which realize onlyrecursive types.</abstract><cop>Pasadena</cop><pub>Cambridge University Press</pub><doi>10.1017/jsl.2013.2</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4812 |
ispartof | The Journal of symbolic logic, 2014-03, Vol.79 (1), p.186-192 |
issn | 0022-4812 1943-5886 |
language | eng |
recordid | cdi_proquest_journals_2787279105 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | Logic Mathematics Philosophy Realism |
title | DECIDABLE MODELS OF ω-STABLETHEORIES |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DECIDABLE%20MODELS%20OF%20%CF%89-STABLETHEORIES&rft.jtitle=The%20Journal%20of%20symbolic%20logic&rft.au=Andrews,%20Uri&rft.date=2014-03-01&rft.volume=79&rft.issue=1&rft.spage=186&rft.epage=192&rft.pages=186-192&rft.issn=0022-4812&rft.eissn=1943-5886&rft_id=info:doi/10.1017/jsl.2013.2&rft_dat=%3Cproquest%3E2787279105%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787279105&rft_id=info:pmid/&rfr_iscdi=true |