A new kind of neuron model with a tunable activation function and its applications
A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduc...
Gespeichert in:
Veröffentlicht in: | Science China. Technological sciences 1997-02, Vol.40 (1), p.105-112 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 112 |
---|---|
container_issue | 1 |
container_start_page | 105 |
container_title | Science China. Technological sciences |
container_volume | 40 |
creator | 吴佑寿 赵明生 丁晓青 |
description | A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies. |
doi_str_mv | 10.1007/bf02916596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787256109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>3001014028</cqvip_id><sourcerecordid>2787256109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</originalsourceid><addsrcrecordid>eNpFUF1LAzEQDKJgqX3xFwR8E053k_t8rMWqUBBEn4_cZdOmXnPt5c7ivze2fuzD7sDMzsAwdolwgwDZbWVAFJgmRXrCRpinRYQFwGnAaRZHmRR4ziberyGMzAvAeMReptzRnr9bp3lrAh661vFNq6nhe9uvuOL94FTVEFd1bz9UbwNvBlcfgApvtvdcbbeNrQ-kv2BnRjWeJj93zN7m96-zx2jx_PA0my6iWuRJH-lEmgTjVGmjTVpUKqEKc6yEJqikyAnCioWRVBFhTEQGdWaMAlVLLWI5ZldH323X7gbyfbluh86FyFJkeSaSFKEIquujqu5a7zsy5bazG9V9lgjld23l3fy3tn_LetW65c665Z9aAmBoDEQuvwADtWto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787256109</pqid></control><display><type>article</type><title>A new kind of neuron model with a tunable activation function and its applications</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>吴佑寿 赵明生 丁晓青</creator><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><description>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</description><identifier>ISSN: 1674-7321</identifier><identifier>ISSN: 1006-9321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>EISSN: 1862-281X</identifier><identifier>DOI: 10.1007/bf02916596</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>activation ; connection ; function ; network ; networks ; problem ; TAF ; two-spiral ; weight</subject><ispartof>Science China. Technological sciences, 1997-02, Vol.40 (1), p.105-112</ispartof><rights>Science in China Press 1997.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</citedby><cites>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60110X/60110X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><title>A new kind of neuron model with a tunable activation function and its applications</title><title>Science China. Technological sciences</title><addtitle>SCIENCE CHINA Technological Sciences</addtitle><description>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</description><subject>activation</subject><subject>connection</subject><subject>function</subject><subject>network</subject><subject>networks</subject><subject>problem</subject><subject>TAF</subject><subject>two-spiral</subject><subject>weight</subject><issn>1674-7321</issn><issn>1006-9321</issn><issn>1869-1900</issn><issn>1862-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFUF1LAzEQDKJgqX3xFwR8E053k_t8rMWqUBBEn4_cZdOmXnPt5c7ivze2fuzD7sDMzsAwdolwgwDZbWVAFJgmRXrCRpinRYQFwGnAaRZHmRR4ziberyGMzAvAeMReptzRnr9bp3lrAh661vFNq6nhe9uvuOL94FTVEFd1bz9UbwNvBlcfgApvtvdcbbeNrQ-kv2BnRjWeJj93zN7m96-zx2jx_PA0my6iWuRJH-lEmgTjVGmjTVpUKqEKc6yEJqikyAnCioWRVBFhTEQGdWaMAlVLLWI5ZldH323X7gbyfbluh86FyFJkeSaSFKEIquujqu5a7zsy5bazG9V9lgjld23l3fy3tn_LetW65c665Z9aAmBoDEQuvwADtWto</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>吴佑寿 赵明生 丁晓青</creator><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970201</creationdate><title>A new kind of neuron model with a tunable activation function and its applications</title><author>吴佑寿 赵明生 丁晓青</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>activation</topic><topic>connection</topic><topic>function</topic><topic>network</topic><topic>networks</topic><topic>problem</topic><topic>TAF</topic><topic>two-spiral</topic><topic>weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>吴佑寿 赵明生 丁晓青</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new kind of neuron model with a tunable activation function and its applications</atitle><jtitle>Science China. Technological sciences</jtitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><date>1997-02-01</date><risdate>1997</risdate><volume>40</volume><issue>1</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>1674-7321</issn><issn>1006-9321</issn><eissn>1869-1900</eissn><eissn>1862-281X</eissn><abstract>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/bf02916596</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7321 |
ispartof | Science China. Technological sciences, 1997-02, Vol.40 (1), p.105-112 |
issn | 1674-7321 1006-9321 1869-1900 1862-281X |
language | eng |
recordid | cdi_proquest_journals_2787256109 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | activation connection function network networks problem TAF two-spiral weight |
title | A new kind of neuron model with a tunable activation function and its applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20kind%20of%20neuron%20model%20with%20a%20tunable%20activation%20function%20and%20its%20applications&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=%E5%90%B4%E4%BD%91%E5%AF%BF%20%E8%B5%B5%E6%98%8E%E7%94%9F%20%E4%B8%81%E6%99%93%E9%9D%92&rft.date=1997-02-01&rft.volume=40&rft.issue=1&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/bf02916596&rft_dat=%3Cproquest_cross%3E2787256109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787256109&rft_id=info:pmid/&rft_cqvip_id=3001014028&rfr_iscdi=true |