A new kind of neuron model with a tunable activation function and its applications

A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Technological sciences 1997-02, Vol.40 (1), p.105-112
1. Verfasser: 吴佑寿 赵明生 丁晓青
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 112
container_issue 1
container_start_page 105
container_title Science China. Technological sciences
container_volume 40
creator 吴佑寿 赵明生 丁晓青
description A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.
doi_str_mv 10.1007/bf02916596
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787256109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>3001014028</cqvip_id><sourcerecordid>2787256109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</originalsourceid><addsrcrecordid>eNpFUF1LAzEQDKJgqX3xFwR8E053k_t8rMWqUBBEn4_cZdOmXnPt5c7ivze2fuzD7sDMzsAwdolwgwDZbWVAFJgmRXrCRpinRYQFwGnAaRZHmRR4ziberyGMzAvAeMReptzRnr9bp3lrAh661vFNq6nhe9uvuOL94FTVEFd1bz9UbwNvBlcfgApvtvdcbbeNrQ-kv2BnRjWeJj93zN7m96-zx2jx_PA0my6iWuRJH-lEmgTjVGmjTVpUKqEKc6yEJqikyAnCioWRVBFhTEQGdWaMAlVLLWI5ZldH323X7gbyfbluh86FyFJkeSaSFKEIquujqu5a7zsy5bazG9V9lgjld23l3fy3tn_LetW65c665Z9aAmBoDEQuvwADtWto</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787256109</pqid></control><display><type>article</type><title>A new kind of neuron model with a tunable activation function and its applications</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>吴佑寿 赵明生 丁晓青</creator><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><description>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</description><identifier>ISSN: 1674-7321</identifier><identifier>ISSN: 1006-9321</identifier><identifier>EISSN: 1869-1900</identifier><identifier>EISSN: 1862-281X</identifier><identifier>DOI: 10.1007/bf02916596</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>activation ; connection ; function ; network ; networks ; problem ; TAF ; two-spiral ; weight</subject><ispartof>Science China. Technological sciences, 1997-02, Vol.40 (1), p.105-112</ispartof><rights>Science in China Press 1997.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</citedby><cites>FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60110X/60110X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><title>A new kind of neuron model with a tunable activation function and its applications</title><title>Science China. Technological sciences</title><addtitle>SCIENCE CHINA Technological Sciences</addtitle><description>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</description><subject>activation</subject><subject>connection</subject><subject>function</subject><subject>network</subject><subject>networks</subject><subject>problem</subject><subject>TAF</subject><subject>two-spiral</subject><subject>weight</subject><issn>1674-7321</issn><issn>1006-9321</issn><issn>1869-1900</issn><issn>1862-281X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpFUF1LAzEQDKJgqX3xFwR8E053k_t8rMWqUBBEn4_cZdOmXnPt5c7ivze2fuzD7sDMzsAwdolwgwDZbWVAFJgmRXrCRpinRYQFwGnAaRZHmRR4ziberyGMzAvAeMReptzRnr9bp3lrAh661vFNq6nhe9uvuOL94FTVEFd1bz9UbwNvBlcfgApvtvdcbbeNrQ-kv2BnRjWeJj93zN7m96-zx2jx_PA0my6iWuRJH-lEmgTjVGmjTVpUKqEKc6yEJqikyAnCioWRVBFhTEQGdWaMAlVLLWI5ZldH323X7gbyfbluh86FyFJkeSaSFKEIquujqu5a7zsy5bazG9V9lgjld23l3fy3tn_LetW65c665Z9aAmBoDEQuvwADtWto</recordid><startdate>19970201</startdate><enddate>19970201</enddate><creator>吴佑寿 赵明生 丁晓青</creator><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970201</creationdate><title>A new kind of neuron model with a tunable activation function and its applications</title><author>吴佑寿 赵明生 丁晓青</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-d53f5146adfdf69ba5eb181b2de0b328e032842f3ebee14eeef1d7ffa0ac3d243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>activation</topic><topic>connection</topic><topic>function</topic><topic>network</topic><topic>networks</topic><topic>problem</topic><topic>TAF</topic><topic>two-spiral</topic><topic>weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>吴佑寿 赵明生 丁晓青</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Science China. Technological sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>吴佑寿 赵明生 丁晓青</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new kind of neuron model with a tunable activation function and its applications</atitle><jtitle>Science China. Technological sciences</jtitle><addtitle>SCIENCE CHINA Technological Sciences</addtitle><date>1997-02-01</date><risdate>1997</risdate><volume>40</volume><issue>1</issue><spage>105</spage><epage>112</epage><pages>105-112</pages><issn>1674-7321</issn><issn>1006-9321</issn><eissn>1869-1900</eissn><eissn>1862-281X</eissn><abstract>A new neuron model with a tunable activation function, denoted by the TAF model, and its application are addressed. The activation function as well as the connection weights of the neuron model can be adjusted in the training process The two-spiral problem was used as an example to show how to deduce the adjustable activation function required, and how to construct and train the network by the use of the a priori knowledge of the problem. Due to the incorporation of constraints known a priori into the activation function, many novel aspects are revealed, such as small network size, fast learning and good performances. It is believed that the introduction of the new neuron model will pave a new way in ANN studies.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/bf02916596</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-7321
ispartof Science China. Technological sciences, 1997-02, Vol.40 (1), p.105-112
issn 1674-7321
1006-9321
1869-1900
1862-281X
language eng
recordid cdi_proquest_journals_2787256109
source SpringerLink Journals; Alma/SFX Local Collection
subjects activation
connection
function
network
networks
problem
TAF
two-spiral
weight
title A new kind of neuron model with a tunable activation function and its applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T10%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20kind%20of%20neuron%20model%20with%20a%20tunable%20activation%20function%20and%20its%20applications&rft.jtitle=Science%20China.%20Technological%20sciences&rft.au=%E5%90%B4%E4%BD%91%E5%AF%BF%20%E8%B5%B5%E6%98%8E%E7%94%9F%20%E4%B8%81%E6%99%93%E9%9D%92&rft.date=1997-02-01&rft.volume=40&rft.issue=1&rft.spage=105&rft.epage=112&rft.pages=105-112&rft.issn=1674-7321&rft.eissn=1869-1900&rft_id=info:doi/10.1007/bf02916596&rft_dat=%3Cproquest_cross%3E2787256109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787256109&rft_id=info:pmid/&rft_cqvip_id=3001014028&rfr_iscdi=true