Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval

LetT: [0, 1]→[0, 1] be a unimodal map with positive topological entropy. ThenT has a unique measure μ(T) of maximal entropy. It is proved that the mapT↦μ(T) is continuous with respect to the weak star-topology.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Qualitative theory of dynamical systems 2003, Vol.4 (1), p.67-76
1. Verfasser: Raith, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 76
container_issue 1
container_start_page 67
container_title Qualitative theory of dynamical systems
container_volume 4
creator Raith, Peter
description LetT: [0, 1]→[0, 1] be a unimodal map with positive topological entropy. ThenT has a unique measure μ(T) of maximal entropy. It is proved that the mapT↦μ(T) is continuous with respect to the weak star-topology.
doi_str_mv 10.1007/BF02972823
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787241652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787241652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-ad4e432493d72c192ade5b751100b33bcabb4df722b844f2a3e5f813f36dbe623</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOKc3_oKCeCNUk5M0aS91bDrY9MZdh7RNsKNLapKK-_e2bqDn5nzwnHN4X4SuCb4nGIuHpwWGQkAO9ARNCOeQ0qyA03_1OboIYYsxB0Fhgl5nzsbG9k3cJ84k8UMna61C7_XYrtV3s1NtMrfRu26fGOeTjW12rh6Ga9WFxNnfnaWN2n-p9hKdGdUGfXXMU7RZzN9nL-nq7Xk5e1ylFWAWU1UzzSiwgtYCKlKAqnVWiowMIkpKy0qVJauNAChzxgwoqjOTE2oor0vNgU7RzeFu591nr0OUW9d7O7yUIHIBjPBspO4OVOVdCF4b2flBj99LguXol_zza4Bvj7AKqm1sI5WPTdXqIPEYwFkmBtN-ALbSZ8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787241652</pqid></control><display><type>article</type><title>Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval</title><source>Springer Nature - Complete Springer Journals</source><creator>Raith, Peter</creator><creatorcontrib>Raith, Peter</creatorcontrib><description>LetT: [0, 1]→[0, 1] be a unimodal map with positive topological entropy. ThenT has a unique measure μ(T) of maximal entropy. It is proved that the mapT↦μ(T) is continuous with respect to the weak star-topology.</description><identifier>ISSN: 1662-3592</identifier><identifier>ISSN: 1575-5460</identifier><identifier>EISSN: 1662-3592</identifier><identifier>DOI: 10.1007/BF02972823</identifier><language>eng</language><publisher>Lleida: Edicions de la Universitat de Lleida</publisher><subject>Entropy ; Topology</subject><ispartof>Qualitative theory of dynamical systems, 2003, Vol.4 (1), p.67-76</ispartof><rights>(c) Casalini Libri, 50014 Fiesole (Italy) - www.casalini.it</rights><rights>Birkhäuser-Verlag 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-ad4e432493d72c192ade5b751100b33bcabb4df722b844f2a3e5f813f36dbe623</citedby><cites>FETCH-LOGICAL-c204t-ad4e432493d72c192ade5b751100b33bcabb4df722b844f2a3e5f813f36dbe623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Raith, Peter</creatorcontrib><title>Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval</title><title>Qualitative theory of dynamical systems</title><description>LetT: [0, 1]→[0, 1] be a unimodal map with positive topological entropy. ThenT has a unique measure μ(T) of maximal entropy. It is proved that the mapT↦μ(T) is continuous with respect to the weak star-topology.</description><subject>Entropy</subject><subject>Topology</subject><issn>1662-3592</issn><issn>1575-5460</issn><issn>1662-3592</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpNkF1LwzAUhoMoOKc3_oKCeCNUk5M0aS91bDrY9MZdh7RNsKNLapKK-_e2bqDn5nzwnHN4X4SuCb4nGIuHpwWGQkAO9ARNCOeQ0qyA03_1OboIYYsxB0Fhgl5nzsbG9k3cJ84k8UMna61C7_XYrtV3s1NtMrfRu26fGOeTjW12rh6Ga9WFxNnfnaWN2n-p9hKdGdUGfXXMU7RZzN9nL-nq7Xk5e1ylFWAWU1UzzSiwgtYCKlKAqnVWiowMIkpKy0qVJauNAChzxgwoqjOTE2oor0vNgU7RzeFu591nr0OUW9d7O7yUIHIBjPBspO4OVOVdCF4b2flBj99LguXol_zza4Bvj7AKqm1sI5WPTdXqIPEYwFkmBtN-ALbSZ8M</recordid><startdate>2003</startdate><enddate>2003</enddate><creator>Raith, Peter</creator><general>Edicions de la Universitat de Lleida</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2003</creationdate><title>Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval</title><author>Raith, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-ad4e432493d72c192ade5b751100b33bcabb4df722b844f2a3e5f813f36dbe623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Entropy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raith, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Qualitative theory of dynamical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raith, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval</atitle><jtitle>Qualitative theory of dynamical systems</jtitle><date>2003</date><risdate>2003</risdate><volume>4</volume><issue>1</issue><spage>67</spage><epage>76</epage><pages>67-76</pages><issn>1662-3592</issn><issn>1575-5460</issn><eissn>1662-3592</eissn><abstract>LetT: [0, 1]→[0, 1] be a unimodal map with positive topological entropy. ThenT has a unique measure μ(T) of maximal entropy. It is proved that the mapT↦μ(T) is continuous with respect to the weak star-topology.</abstract><cop>Lleida</cop><pub>Edicions de la Universitat de Lleida</pub><doi>10.1007/BF02972823</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1662-3592
ispartof Qualitative theory of dynamical systems, 2003, Vol.4 (1), p.67-76
issn 1662-3592
1575-5460
1662-3592
language eng
recordid cdi_proquest_journals_2787241652
source Springer Nature - Complete Springer Journals
subjects Entropy
Topology
title Continuity of the Measure of Maximal Entropy for Unimodal Maps on the Interval
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuity%20of%20the%20Measure%20of%20Maximal%20Entropy%20for%20Unimodal%20Maps%20on%20the%20Interval&rft.jtitle=Qualitative%20theory%20of%20dynamical%20systems&rft.au=Raith,%20Peter&rft.date=2003&rft.volume=4&rft.issue=1&rft.spage=67&rft.epage=76&rft.pages=67-76&rft.issn=1662-3592&rft.eissn=1662-3592&rft_id=info:doi/10.1007/BF02972823&rft_dat=%3Cproquest_cross%3E2787241652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787241652&rft_id=info:pmid/&rfr_iscdi=true