Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method

Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2023-04, Vol.29 (7-8), p.1893-1909
Hauptverfasser: Khurana, Aarti, Kaur, Savkirat, Tomar, SK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1909
container_issue 7-8
container_start_page 1893
container_title Journal of vibration and control
container_volume 29
creator Khurana, Aarti
Kaur, Savkirat
Tomar, SK
description Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.
doi_str_mv 10.1177/10775463211072688
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787167423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463211072688</sage_id><sourcerecordid>2787167423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq0n2I1lvUtQKBUHseZndzLZps7s1Sav996ZU8CCe5g3vY4ZHyDVnt5xLeceZlHlWpIJHJAqlTsiIy4wnolTFacSRTw6Cc3Lh_YoxlmWcjYh-g71Fs1gm1qyRfsIOPTU97bY2GAt7dKgpWvDBNLRDbYA2Qx_A9KZf0N1gtL-nc490aGlYIp2CX6O1tIPgzFd0hOWgL8lZC9bj1c8ck_nT4_tkmsxen18mD7OkSbkISalUraDWEuq8beq0VkWdZ_Fp0ULRIqalbEWtdS4bxFyquAPLoExFriMD6ZjcHHM3bvjYog_Vati6Pp6shFSSFzITaVTxo6pxg_cO22rjTAduX3FWHcqs_pQZPbdHj4cF_qb-b_gG6Oh1Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787167423</pqid></control><display><type>article</type><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><source>SAGE Complete A-Z List</source><creator>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</creator><creatorcontrib>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</creatorcontrib><description>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463211072688</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Elastic media ; Half spaces ; Matrix methods ; Monolayers ; Phase velocity ; Surface waves ; Voids ; Wave propagation</subject><ispartof>Journal of vibration and control, 2023-04, Vol.29 (7-8), p.1893-1909</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</citedby><cites>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</cites><orcidid>0000-0001-7267-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10775463211072688$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10775463211072688$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Khurana, Aarti</creatorcontrib><creatorcontrib>Kaur, Savkirat</creatorcontrib><creatorcontrib>Tomar, SK</creatorcontrib><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><title>Journal of vibration and control</title><description>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</description><subject>Elastic media</subject><subject>Half spaces</subject><subject>Matrix methods</subject><subject>Monolayers</subject><subject>Phase velocity</subject><subject>Surface waves</subject><subject>Voids</subject><subject>Wave propagation</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq0n2I1lvUtQKBUHseZndzLZps7s1Sav996ZU8CCe5g3vY4ZHyDVnt5xLeceZlHlWpIJHJAqlTsiIy4wnolTFacSRTw6Cc3Lh_YoxlmWcjYh-g71Fs1gm1qyRfsIOPTU97bY2GAt7dKgpWvDBNLRDbYA2Qx_A9KZf0N1gtL-nc490aGlYIp2CX6O1tIPgzFd0hOWgL8lZC9bj1c8ck_nT4_tkmsxen18mD7OkSbkISalUraDWEuq8beq0VkWdZ_Fp0ULRIqalbEWtdS4bxFyquAPLoExFriMD6ZjcHHM3bvjYog_Vati6Pp6shFSSFzITaVTxo6pxg_cO22rjTAduX3FWHcqs_pQZPbdHj4cF_qb-b_gG6Oh1Pg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Khurana, Aarti</creator><creator>Kaur, Savkirat</creator><creator>Tomar, SK</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7267-9962</orcidid></search><sort><creationdate>202304</creationdate><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><author>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Elastic media</topic><topic>Half spaces</topic><topic>Matrix methods</topic><topic>Monolayers</topic><topic>Phase velocity</topic><topic>Surface waves</topic><topic>Voids</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khurana, Aarti</creatorcontrib><creatorcontrib>Kaur, Savkirat</creatorcontrib><creatorcontrib>Tomar, SK</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khurana, Aarti</au><au>Kaur, Savkirat</au><au>Tomar, SK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</atitle><jtitle>Journal of vibration and control</jtitle><date>2023-04</date><risdate>2023</risdate><volume>29</volume><issue>7-8</issue><spage>1893</spage><epage>1909</epage><pages>1893-1909</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463211072688</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7267-9962</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2023-04, Vol.29 (7-8), p.1893-1909
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2787167423
source SAGE Complete A-Z List
subjects Elastic media
Half spaces
Matrix methods
Monolayers
Phase velocity
Surface waves
Voids
Wave propagation
title Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-like%20waves%20in%20multilayered%20elastic%20media%20containing%20voids:%20Use%20of%20the%20Haskell%20matrix%20method&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Khurana,%20Aarti&rft.date=2023-04&rft.volume=29&rft.issue=7-8&rft.spage=1893&rft.epage=1909&rft.pages=1893-1909&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463211072688&rft_dat=%3Cproquest_cross%3E2787167423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787167423&rft_id=info:pmid/&rft_sage_id=10.1177_10775463211072688&rfr_iscdi=true