Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method
Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduce...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2023-04, Vol.29 (7-8), p.1893-1909 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1909 |
---|---|
container_issue | 7-8 |
container_start_page | 1893 |
container_title | Journal of vibration and control |
container_volume | 29 |
creator | Khurana, Aarti Kaur, Savkirat Tomar, SK |
description | Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully. |
doi_str_mv | 10.1177/10775463211072688 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787167423</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_10775463211072688</sage_id><sourcerecordid>2787167423</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwHPq0n2I1lvUtQKBUHseZndzLZps7s1Sav996ZU8CCe5g3vY4ZHyDVnt5xLeceZlHlWpIJHJAqlTsiIy4wnolTFacSRTw6Cc3Lh_YoxlmWcjYh-g71Fs1gm1qyRfsIOPTU97bY2GAt7dKgpWvDBNLRDbYA2Qx_A9KZf0N1gtL-nc490aGlYIp2CX6O1tIPgzFd0hOWgL8lZC9bj1c8ck_nT4_tkmsxen18mD7OkSbkISalUraDWEuq8beq0VkWdZ_Fp0ULRIqalbEWtdS4bxFyquAPLoExFriMD6ZjcHHM3bvjYog_Vati6Pp6shFSSFzITaVTxo6pxg_cO22rjTAduX3FWHcqs_pQZPbdHj4cF_qb-b_gG6Oh1Pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787167423</pqid></control><display><type>article</type><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><source>SAGE Complete A-Z List</source><creator>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</creator><creatorcontrib>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</creatorcontrib><description>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/10775463211072688</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Elastic media ; Half spaces ; Matrix methods ; Monolayers ; Phase velocity ; Surface waves ; Voids ; Wave propagation</subject><ispartof>Journal of vibration and control, 2023-04, Vol.29 (7-8), p.1893-1909</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</citedby><cites>FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</cites><orcidid>0000-0001-7267-9962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/10775463211072688$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/10775463211072688$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21817,27922,27923,43619,43620</link.rule.ids></links><search><creatorcontrib>Khurana, Aarti</creatorcontrib><creatorcontrib>Kaur, Savkirat</creatorcontrib><creatorcontrib>Tomar, SK</creatorcontrib><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><title>Journal of vibration and control</title><description>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</description><subject>Elastic media</subject><subject>Half spaces</subject><subject>Matrix methods</subject><subject>Monolayers</subject><subject>Phase velocity</subject><subject>Surface waves</subject><subject>Voids</subject><subject>Wave propagation</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwHPq0n2I1lvUtQKBUHseZndzLZps7s1Sav996ZU8CCe5g3vY4ZHyDVnt5xLeceZlHlWpIJHJAqlTsiIy4wnolTFacSRTw6Cc3Lh_YoxlmWcjYh-g71Fs1gm1qyRfsIOPTU97bY2GAt7dKgpWvDBNLRDbYA2Qx_A9KZf0N1gtL-nc490aGlYIp2CX6O1tIPgzFd0hOWgL8lZC9bj1c8ck_nT4_tkmsxen18mD7OkSbkISalUraDWEuq8beq0VkWdZ_Fp0ULRIqalbEWtdS4bxFyquAPLoExFriMD6ZjcHHM3bvjYog_Vati6Pp6shFSSFzITaVTxo6pxg_cO22rjTAduX3FWHcqs_pQZPbdHj4cF_qb-b_gG6Oh1Pg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Khurana, Aarti</creator><creator>Kaur, Savkirat</creator><creator>Tomar, SK</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7267-9962</orcidid></search><sort><creationdate>202304</creationdate><title>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</title><author>Khurana, Aarti ; Kaur, Savkirat ; Tomar, SK</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-988b8abd7ab5fcb3b86b545462fa6fee397f2bdd57cee578397a04a9325d7f2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Elastic media</topic><topic>Half spaces</topic><topic>Matrix methods</topic><topic>Monolayers</topic><topic>Phase velocity</topic><topic>Surface waves</topic><topic>Voids</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khurana, Aarti</creatorcontrib><creatorcontrib>Kaur, Savkirat</creatorcontrib><creatorcontrib>Tomar, SK</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khurana, Aarti</au><au>Kaur, Savkirat</au><au>Tomar, SK</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method</atitle><jtitle>Journal of vibration and control</jtitle><date>2023-04</date><risdate>2023</risdate><volume>29</volume><issue>7-8</issue><spage>1893</spage><epage>1909</epage><pages>1893-1909</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>Using the Haskell matrix method, the dispersion relation of Rayleigh-like surface waves propagating through a multilayered elastic solid half-space is derived. Each layer as well as the half-space is assumed to have voids (pores) distributed evenly throughout. This dispersion relation is then reduced for a 2-layered model (single layer over a half-space) to study the characteristics of phase speed of Rayleigh-like wave. For a particular model, the numerical computations are performed to observe the effect of voids on the fundamental mode of Rayleigh-like waves for n = 2 and 3. For the 2-layered model, it is also shown that the particle motion remains elliptical but influenced by the presence of voids. In the absence of voids from the model, the dispersion relation earlier obtained by Haskell (1953) for the case n = 2 is recovered successfully.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/10775463211072688</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7267-9962</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-5463 |
ispartof | Journal of vibration and control, 2023-04, Vol.29 (7-8), p.1893-1909 |
issn | 1077-5463 1741-2986 |
language | eng |
recordid | cdi_proquest_journals_2787167423 |
source | SAGE Complete A-Z List |
subjects | Elastic media Half spaces Matrix methods Monolayers Phase velocity Surface waves Voids Wave propagation |
title | Rayleigh-like waves in multilayered elastic media containing voids: Use of the Haskell matrix method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rayleigh-like%20waves%20in%20multilayered%20elastic%20media%20containing%20voids:%20Use%20of%20the%20Haskell%20matrix%20method&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Khurana,%20Aarti&rft.date=2023-04&rft.volume=29&rft.issue=7-8&rft.spage=1893&rft.epage=1909&rft.pages=1893-1909&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/10775463211072688&rft_dat=%3Cproquest_cross%3E2787167423%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787167423&rft_id=info:pmid/&rft_sage_id=10.1177_10775463211072688&rfr_iscdi=true |