Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos

A bstract Measuring the neutrino mixing parameter sin 2 θ 13 to the sub-percent precision level could be necessary in the next ten years for the precision unitary test of the PMNS matrix. In this work, we discuss the possibility of such a measurement with reactor antineutrinos. We find that a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2023-03, Vol.2023 (3), p.72, Article 72
Hauptverfasser: Zhang, Jinnan, Cao, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page 72
container_title The journal of high energy physics
container_volume 2023
creator Zhang, Jinnan
Cao, Jun
description A bstract Measuring the neutrino mixing parameter sin 2 θ 13 to the sub-percent precision level could be necessary in the next ten years for the precision unitary test of the PMNS matrix. In this work, we discuss the possibility of such a measurement with reactor antineutrinos. We find that a single liquid scintillator detector on a reasonable scale could achieve the goal. We propose to install a detector of ∼ 10% energy resolution at about 2.0 km from the reactors with a JUNO-like overburden. The integrated luminosity requirement is about 150 kton · GW · year, corresponding to 4 years’ operation of a 4 kton detector near a reactor complex of 9.2 GW thermal power like Taishan reactor. Unlike the previous θ 13 experiments with identical near and far detectors, which can suppress the systematics especially the rate uncertainty by the near-far relative measurement and the optimal baseline is at the first oscillation maximum of about 1.8 km, a single-detector measurement prefers to offset the baseline from the oscillation maximum. At low statistics ≲ 10 kton · GW · year, the rate uncertainty dominates the systematics, and the optimal baseline is about 1.3 km. At higher statistics, the spectral shape uncertainty becomes dominant, and the optimal baseline shifts to about 2.0 km. The optimal baseline keeps being ∼ 2 . 0 km for an integrated luminosity up to 10 6 kton · GW · year. Impacts of other factors on the precision sin 2 θ 13 measurement are also discussed. We have assumed that the TAO experiment will improve our understanding of the spectral shape uncertainty, which gives the highest precision measurement of reactor antineutrino spectrum for neutrino energy in the range of 3–6 MeV. We find that the optimal baseline is ∼ 2 . 9 km with a flat input spectral shape uncertainty provided by the future summation or conversion methods’ prediction. The shape uncertainty would be the bottleneck of the sin 2 θ 13 precision measurement. The sin 2 θ 13 precision is not sensitive to the detector energy resolution and the precision of other oscillation parameters.
doi_str_mv 10.1007/JHEP03(2023)072
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787094220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787094220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c235t-5dda088b120add090477dfc7f6fb8fb34028aecab2fd8db3c3aed84289835af53</originalsourceid><addsrcrecordid>eNp1kM1KxDAURoMoOI6u3Qbc6KLOTdKadCnD6CgDiozrkOZHOzhJTVoG38yn8JlsqaAbV_dyOd934SB0SuCSAPDZ_XLxCOycAmUXwOkemhCgZSZyXu7_2Q_RUUobAFKQEiboaR12KpqEFU5dlTU2autb3ESr61QHj7dWpS7a7XANDqfa069PwvCubl9xtEq3IWLl29rbro21D-kYHTj1luzJz5yi55vFer7MVg-3d_PrVaYpK9qsMEaBEBWhoIyBEnLOjdPcXblKuIrlQIWyWlXUGWEqppmyRuRUlIIVyhVsis7G3iaG986mVm5CF33_UlIuOJQ5pdBTs5HSMaQUrZNNrLcqfkgCchAnR3FyECd7cX0CxkTqSf9i42_vf5FvgC5x1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787094220</pqid></control><display><type>article</type><title>Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Alma/SFX Local Collection</source><creator>Zhang, Jinnan ; Cao, Jun</creator><creatorcontrib>Zhang, Jinnan ; Cao, Jun</creatorcontrib><description>A bstract Measuring the neutrino mixing parameter sin 2 θ 13 to the sub-percent precision level could be necessary in the next ten years for the precision unitary test of the PMNS matrix. In this work, we discuss the possibility of such a measurement with reactor antineutrinos. We find that a single liquid scintillator detector on a reasonable scale could achieve the goal. We propose to install a detector of ∼ 10% energy resolution at about 2.0 km from the reactors with a JUNO-like overburden. The integrated luminosity requirement is about 150 kton · GW · year, corresponding to 4 years’ operation of a 4 kton detector near a reactor complex of 9.2 GW thermal power like Taishan reactor. Unlike the previous θ 13 experiments with identical near and far detectors, which can suppress the systematics especially the rate uncertainty by the near-far relative measurement and the optimal baseline is at the first oscillation maximum of about 1.8 km, a single-detector measurement prefers to offset the baseline from the oscillation maximum. At low statistics ≲ 10 kton · GW · year, the rate uncertainty dominates the systematics, and the optimal baseline is about 1.3 km. At higher statistics, the spectral shape uncertainty becomes dominant, and the optimal baseline shifts to about 2.0 km. The optimal baseline keeps being ∼ 2 . 0 km for an integrated luminosity up to 10 6 kton · GW · year. Impacts of other factors on the precision sin 2 θ 13 measurement are also discussed. We have assumed that the TAO experiment will improve our understanding of the spectral shape uncertainty, which gives the highest precision measurement of reactor antineutrino spectrum for neutrino energy in the range of 3–6 MeV. We find that the optimal baseline is ∼ 2 . 9 km with a flat input spectral shape uncertainty provided by the future summation or conversion methods’ prediction. The shape uncertainty would be the bottleneck of the sin 2 θ 13 precision measurement. The sin 2 θ 13 precision is not sensitive to the detector energy resolution and the precision of other oscillation parameters.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2023)072</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antineutrinos ; Classical and Quantum Gravitation ; Elementary Particles ; Energy resolution ; High energy physics ; Luminosity ; Neutrinos ; Parameters ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Experimental Physics ; Relativity Theory ; Scintillation counters ; Sensors ; String Theory ; Uncertainty</subject><ispartof>The journal of high energy physics, 2023-03, Vol.2023 (3), p.72, Article 72</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c235t-5dda088b120add090477dfc7f6fb8fb34028aecab2fd8db3c3aed84289835af53</cites><orcidid>0000-0003-4395-363X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP03(2023)072$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP03(2023)072$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,862,27911,27912,41107,42176,51563</link.rule.ids></links><search><creatorcontrib>Zhang, Jinnan</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><title>Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><description>A bstract Measuring the neutrino mixing parameter sin 2 θ 13 to the sub-percent precision level could be necessary in the next ten years for the precision unitary test of the PMNS matrix. In this work, we discuss the possibility of such a measurement with reactor antineutrinos. We find that a single liquid scintillator detector on a reasonable scale could achieve the goal. We propose to install a detector of ∼ 10% energy resolution at about 2.0 km from the reactors with a JUNO-like overburden. The integrated luminosity requirement is about 150 kton · GW · year, corresponding to 4 years’ operation of a 4 kton detector near a reactor complex of 9.2 GW thermal power like Taishan reactor. Unlike the previous θ 13 experiments with identical near and far detectors, which can suppress the systematics especially the rate uncertainty by the near-far relative measurement and the optimal baseline is at the first oscillation maximum of about 1.8 km, a single-detector measurement prefers to offset the baseline from the oscillation maximum. At low statistics ≲ 10 kton · GW · year, the rate uncertainty dominates the systematics, and the optimal baseline is about 1.3 km. At higher statistics, the spectral shape uncertainty becomes dominant, and the optimal baseline shifts to about 2.0 km. The optimal baseline keeps being ∼ 2 . 0 km for an integrated luminosity up to 10 6 kton · GW · year. Impacts of other factors on the precision sin 2 θ 13 measurement are also discussed. We have assumed that the TAO experiment will improve our understanding of the spectral shape uncertainty, which gives the highest precision measurement of reactor antineutrino spectrum for neutrino energy in the range of 3–6 MeV. We find that the optimal baseline is ∼ 2 . 9 km with a flat input spectral shape uncertainty provided by the future summation or conversion methods’ prediction. The shape uncertainty would be the bottleneck of the sin 2 θ 13 precision measurement. The sin 2 θ 13 precision is not sensitive to the detector energy resolution and the precision of other oscillation parameters.</description><subject>Antineutrinos</subject><subject>Classical and Quantum Gravitation</subject><subject>Elementary Particles</subject><subject>Energy resolution</subject><subject>High energy physics</subject><subject>Luminosity</subject><subject>Neutrinos</subject><subject>Parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Experimental Physics</subject><subject>Relativity Theory</subject><subject>Scintillation counters</subject><subject>Sensors</subject><subject>String Theory</subject><subject>Uncertainty</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kM1KxDAURoMoOI6u3Qbc6KLOTdKadCnD6CgDiozrkOZHOzhJTVoG38yn8JlsqaAbV_dyOd934SB0SuCSAPDZ_XLxCOycAmUXwOkemhCgZSZyXu7_2Q_RUUobAFKQEiboaR12KpqEFU5dlTU2autb3ESr61QHj7dWpS7a7XANDqfa069PwvCubl9xtEq3IWLl29rbro21D-kYHTj1luzJz5yi55vFer7MVg-3d_PrVaYpK9qsMEaBEBWhoIyBEnLOjdPcXblKuIrlQIWyWlXUGWEqppmyRuRUlIIVyhVsis7G3iaG986mVm5CF33_UlIuOJQ5pdBTs5HSMaQUrZNNrLcqfkgCchAnR3FyECd7cX0CxkTqSf9i42_vf5FvgC5x1A</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Zhang, Jinnan</creator><creator>Cao, Jun</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4395-363X</orcidid></search><sort><creationdate>20230313</creationdate><title>Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos</title><author>Zhang, Jinnan ; Cao, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c235t-5dda088b120add090477dfc7f6fb8fb34028aecab2fd8db3c3aed84289835af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antineutrinos</topic><topic>Classical and Quantum Gravitation</topic><topic>Elementary Particles</topic><topic>Energy resolution</topic><topic>High energy physics</topic><topic>Luminosity</topic><topic>Neutrinos</topic><topic>Parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Experimental Physics</topic><topic>Relativity Theory</topic><topic>Scintillation counters</topic><topic>Sensors</topic><topic>String Theory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jinnan</creatorcontrib><creatorcontrib>Cao, Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jinnan</au><au>Cao, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><date>2023-03-13</date><risdate>2023</risdate><volume>2023</volume><issue>3</issue><spage>72</spage><pages>72-</pages><artnum>72</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract Measuring the neutrino mixing parameter sin 2 θ 13 to the sub-percent precision level could be necessary in the next ten years for the precision unitary test of the PMNS matrix. In this work, we discuss the possibility of such a measurement with reactor antineutrinos. We find that a single liquid scintillator detector on a reasonable scale could achieve the goal. We propose to install a detector of ∼ 10% energy resolution at about 2.0 km from the reactors with a JUNO-like overburden. The integrated luminosity requirement is about 150 kton · GW · year, corresponding to 4 years’ operation of a 4 kton detector near a reactor complex of 9.2 GW thermal power like Taishan reactor. Unlike the previous θ 13 experiments with identical near and far detectors, which can suppress the systematics especially the rate uncertainty by the near-far relative measurement and the optimal baseline is at the first oscillation maximum of about 1.8 km, a single-detector measurement prefers to offset the baseline from the oscillation maximum. At low statistics ≲ 10 kton · GW · year, the rate uncertainty dominates the systematics, and the optimal baseline is about 1.3 km. At higher statistics, the spectral shape uncertainty becomes dominant, and the optimal baseline shifts to about 2.0 km. The optimal baseline keeps being ∼ 2 . 0 km for an integrated luminosity up to 10 6 kton · GW · year. Impacts of other factors on the precision sin 2 θ 13 measurement are also discussed. We have assumed that the TAO experiment will improve our understanding of the spectral shape uncertainty, which gives the highest precision measurement of reactor antineutrino spectrum for neutrino energy in the range of 3–6 MeV. We find that the optimal baseline is ∼ 2 . 9 km with a flat input spectral shape uncertainty provided by the future summation or conversion methods’ prediction. The shape uncertainty would be the bottleneck of the sin 2 θ 13 precision measurement. The sin 2 θ 13 precision is not sensitive to the detector energy resolution and the precision of other oscillation parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP03(2023)072</doi><orcidid>https://orcid.org/0000-0003-4395-363X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2023-03, Vol.2023 (3), p.72, Article 72
issn 1029-8479
1029-8479
language eng
recordid cdi_proquest_journals_2787094220
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Alma/SFX Local Collection
subjects Antineutrinos
Classical and Quantum Gravitation
Elementary Particles
Energy resolution
High energy physics
Luminosity
Neutrinos
Parameters
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Experimental Physics
Relativity Theory
Scintillation counters
Sensors
String Theory
Uncertainty
title Towards a sub-percent precision measurement of sin2θ13 with reactor antineutrinos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A47%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20a%20sub-percent%20precision%20measurement%20of%20sin2%CE%B813%20with%20reactor%20antineutrinos&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Zhang,%20Jinnan&rft.date=2023-03-13&rft.volume=2023&rft.issue=3&rft.spage=72&rft.pages=72-&rft.artnum=72&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2023)072&rft_dat=%3Cproquest_cross%3E2787094220%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787094220&rft_id=info:pmid/&rfr_iscdi=true