Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test

Two recursive schemes are presented for the calculation of the probabilityP(g(x)≤Sn(x)≤h(x) for allx∈®), whereSn is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical papers (Berlin, Germany) Germany), 1998-10, Vol.39 (4), p.361-375
Hauptverfasser: Friedrich, Thomas, Schellhaas, Helmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 375
container_issue 4
container_start_page 361
container_title Statistical papers (Berlin, Germany)
container_volume 39
creator Friedrich, Thomas
Schellhaas, Helmut
description Two recursive schemes are presented for the calculation of the probabilityP(g(x)≤Sn(x)≤h(x) for allx∈®), whereSn is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the distribution and the corresponding percentage points of the test statistic of the two-sided Kolmogorov-Smirnov one sample test. The schemes allow the calculation of the power of the test too. Finally an extensive tabulation of percentage points for the Kolmogorov-Smirnov test is given.
doi_str_mv 10.1007/BF02927099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787045790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787045790</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-58c988e8f09d69ab58d78bbdde933b8138c05ca94d1fda13b36152a26bdf14b93</originalsourceid><addsrcrecordid>eNpFkFFLwzAUhYMoOKcv_oKAb0L1Jlnbm0cdTsWBD-pzSZtkdqy9Nckc_nurE3w693A-7oHD2LmAKwFQXt8uQGpZgtYHbCIKoTJdajxkE9BKZjnI4pidxLgGEIgIE7aaUzdsk0kt9Zw8T--ODy40rk9mNZ7U9ily09t9QjsXuKfw69KOsthaZ_kTbTpaUaDP7KVrQ0-fnHrHo-mGzci5mE7ZkTeb6M7-dMreFnev84ds-Xz_OL9ZZo1ETFmOjUZ06EHbQps6R1tiXVvrtFI1CoUN5I3RMyu8NULVqhC5NLKorRezWqspu9j_HQJ9bMfiak3b0I-VlSyxhFleahipyz3VBIoxOF8Noe1M-KoEVD9DVv9Dqm91o2aC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787045790</pqid></control><display><type>article</type><title>Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test</title><source>SpringerLink Journals - AutoHoldings</source><creator>Friedrich, Thomas ; Schellhaas, Helmut</creator><creatorcontrib>Friedrich, Thomas ; Schellhaas, Helmut</creatorcontrib><description>Two recursive schemes are presented for the calculation of the probabilityP(g(x)≤Sn(x)≤h(x) for allx∈®), whereSn is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the distribution and the corresponding percentage points of the test statistic of the two-sided Kolmogorov-Smirnov one sample test. The schemes allow the calculation of the power of the test too. Finally an extensive tabulation of percentage points for the Kolmogorov-Smirnov test is given.</description><identifier>ISSN: 0932-5026</identifier><identifier>EISSN: 1613-9798</identifier><identifier>DOI: 10.1007/BF02927099</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Continuity (mathematics) ; Distribution functions ; Kolmogorov-Smirnov test ; Mathematical analysis ; Tabulation</subject><ispartof>Statistical papers (Berlin, Germany), 1998-10, Vol.39 (4), p.361-375</ispartof><rights>Springer-Verlag 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-58c988e8f09d69ab58d78bbdde933b8138c05ca94d1fda13b36152a26bdf14b93</citedby><cites>FETCH-LOGICAL-c288t-58c988e8f09d69ab58d78bbdde933b8138c05ca94d1fda13b36152a26bdf14b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Friedrich, Thomas</creatorcontrib><creatorcontrib>Schellhaas, Helmut</creatorcontrib><title>Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test</title><title>Statistical papers (Berlin, Germany)</title><description>Two recursive schemes are presented for the calculation of the probabilityP(g(x)≤Sn(x)≤h(x) for allx∈®), whereSn is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the distribution and the corresponding percentage points of the test statistic of the two-sided Kolmogorov-Smirnov one sample test. The schemes allow the calculation of the power of the test too. Finally an extensive tabulation of percentage points for the Kolmogorov-Smirnov test is given.</description><subject>Continuity (mathematics)</subject><subject>Distribution functions</subject><subject>Kolmogorov-Smirnov test</subject><subject>Mathematical analysis</subject><subject>Tabulation</subject><issn>0932-5026</issn><issn>1613-9798</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkFFLwzAUhYMoOKcv_oKAb0L1Jlnbm0cdTsWBD-pzSZtkdqy9Nckc_nurE3w693A-7oHD2LmAKwFQXt8uQGpZgtYHbCIKoTJdajxkE9BKZjnI4pidxLgGEIgIE7aaUzdsk0kt9Zw8T--ODy40rk9mNZ7U9ily09t9QjsXuKfw69KOsthaZ_kTbTpaUaDP7KVrQ0-fnHrHo-mGzci5mE7ZkTeb6M7-dMreFnev84ds-Xz_OL9ZZo1ETFmOjUZ06EHbQps6R1tiXVvrtFI1CoUN5I3RMyu8NULVqhC5NLKorRezWqspu9j_HQJ9bMfiak3b0I-VlSyxhFleahipyz3VBIoxOF8Noe1M-KoEVD9DVv9Dqm91o2aC</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Friedrich, Thomas</creator><creator>Schellhaas, Helmut</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>19981001</creationdate><title>Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test</title><author>Friedrich, Thomas ; Schellhaas, Helmut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-58c988e8f09d69ab58d78bbdde933b8138c05ca94d1fda13b36152a26bdf14b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Continuity (mathematics)</topic><topic>Distribution functions</topic><topic>Kolmogorov-Smirnov test</topic><topic>Mathematical analysis</topic><topic>Tabulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedrich, Thomas</creatorcontrib><creatorcontrib>Schellhaas, Helmut</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Statistical papers (Berlin, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedrich, Thomas</au><au>Schellhaas, Helmut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test</atitle><jtitle>Statistical papers (Berlin, Germany)</jtitle><date>1998-10-01</date><risdate>1998</risdate><volume>39</volume><issue>4</issue><spage>361</spage><epage>375</epage><pages>361-375</pages><issn>0932-5026</issn><eissn>1613-9798</eissn><abstract>Two recursive schemes are presented for the calculation of the probabilityP(g(x)≤Sn(x)≤h(x) for allx∈®), whereSn is the empirical distribution function of a sample from a continuous distribution andh, g are continuous and isotone functions. The results are specialized for the calculation of the distribution and the corresponding percentage points of the test statistic of the two-sided Kolmogorov-Smirnov one sample test. The schemes allow the calculation of the power of the test too. Finally an extensive tabulation of percentage points for the Kolmogorov-Smirnov test is given.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02927099</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-5026
ispartof Statistical papers (Berlin, Germany), 1998-10, Vol.39 (4), p.361-375
issn 0932-5026
1613-9798
language eng
recordid cdi_proquest_journals_2787045790
source SpringerLink Journals - AutoHoldings
subjects Continuity (mathematics)
Distribution functions
Kolmogorov-Smirnov test
Mathematical analysis
Tabulation
title Computation of the percentage points and the power for the two-sided Kolmogorov-Smirnov one sample test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20percentage%20points%20and%20the%20power%20for%20the%20two-sided%20Kolmogorov-Smirnov%20one%20sample%20test&rft.jtitle=Statistical%20papers%20(Berlin,%20Germany)&rft.au=Friedrich,%20Thomas&rft.date=1998-10-01&rft.volume=39&rft.issue=4&rft.spage=361&rft.epage=375&rft.pages=361-375&rft.issn=0932-5026&rft.eissn=1613-9798&rft_id=info:doi/10.1007/BF02927099&rft_dat=%3Cproquest_cross%3E2787045790%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787045790&rft_id=info:pmid/&rfr_iscdi=true