ON OZAKI CLOSE-TO-CONVEX FUNCTIONS
Let $f$ be analytic in $\mathbb{D}=\{z\in \mathbb{C}:|z|
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2019-02, Vol.99 (1), p.89-100 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 89 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 99 |
creator | ALLU, VASUDEVARAO THOMAS, DEREK K. TUNESKI, NIKOLA |
description | Let
$f$
be analytic in
$\mathbb{D}=\{z\in \mathbb{C}:|z| |
doi_str_mv | 10.1017/S0004972718000989 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787019089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972718000989</cupid><sourcerecordid>2787019089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232t-50b6d410c31cd03c5ee61d47e300ede3572909ea173c83087c7b5d661399666b3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRMFY_gLeg59WZbPbfsYS2BkP2kFTES0g2W2mxpm7ag9_ehBY8iKeZ4b3fG3iE3CI8IKB8LAAg1jKSqIZNK31GApScUxSMnZNglOmoX5Krvt8MF-eRCsidyUPzNn1OwyQzxYyWhiYmf5m9hvNlnpSpyYtrcrGqP3p3c5oTspzPyuSJZmaRJtOM2ohFe8qhEW2MYBnaFpjlzglsY-kYgGsd4zLSoF2NklnFQEkrG94KgUxrIUTDJuT-mLvz3dfB9ftq0x385_CyiqSSgBqUHlx4dFnf9b13q2rn19vaf1cI1VhF9aeKgWEnpt42ft2-u9_o_6kfT7RZ6Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787019089</pqid></control><display><type>article</type><title>ON OZAKI CLOSE-TO-CONVEX FUNCTIONS</title><source>Cambridge Journals</source><creator>ALLU, VASUDEVARAO ; THOMAS, DEREK K. ; TUNESKI, NIKOLA</creator><creatorcontrib>ALLU, VASUDEVARAO ; THOMAS, DEREK K. ; TUNESKI, NIKOLA</creatorcontrib><description>Let
$f$
be analytic in
$\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$
and given by
$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$
. We give sharp bounds for the initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex functions, and of the initial coefficients of the inverse function, together with some growth estimates.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972718000989</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Convex analysis ; Mathematical analysis ; Mathematical functions ; Taylor series ; Thermal expansion</subject><ispartof>Bulletin of the Australian Mathematical Society, 2019-02, Vol.99 (1), p.89-100</ispartof><rights>2018 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c232t-50b6d410c31cd03c5ee61d47e300ede3572909ea173c83087c7b5d661399666b3</citedby><cites>FETCH-LOGICAL-c232t-50b6d410c31cd03c5ee61d47e300ede3572909ea173c83087c7b5d661399666b3</cites><orcidid>0000-0002-5016-6389 ; 0000-0002-9930-7357 ; 0000-0003-3889-0048</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972718000989/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>ALLU, VASUDEVARAO</creatorcontrib><creatorcontrib>THOMAS, DEREK K.</creatorcontrib><creatorcontrib>TUNESKI, NIKOLA</creatorcontrib><title>ON OZAKI CLOSE-TO-CONVEX FUNCTIONS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Let
$f$
be analytic in
$\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$
and given by
$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$
. We give sharp bounds for the initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex functions, and of the initial coefficients of the inverse function, together with some growth estimates.</description><subject>Convex analysis</subject><subject>Mathematical analysis</subject><subject>Mathematical functions</subject><subject>Taylor series</subject><subject>Thermal expansion</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9Lw0AQxRdRMFY_gLeg59WZbPbfsYS2BkP2kFTES0g2W2mxpm7ag9_ehBY8iKeZ4b3fG3iE3CI8IKB8LAAg1jKSqIZNK31GApScUxSMnZNglOmoX5Krvt8MF-eRCsidyUPzNn1OwyQzxYyWhiYmf5m9hvNlnpSpyYtrcrGqP3p3c5oTspzPyuSJZmaRJtOM2ohFe8qhEW2MYBnaFpjlzglsY-kYgGsd4zLSoF2NklnFQEkrG94KgUxrIUTDJuT-mLvz3dfB9ftq0x385_CyiqSSgBqUHlx4dFnf9b13q2rn19vaf1cI1VhF9aeKgWEnpt42ft2-u9_o_6kfT7RZ6Q</recordid><startdate>201902</startdate><enddate>201902</enddate><creator>ALLU, VASUDEVARAO</creator><creator>THOMAS, DEREK K.</creator><creator>TUNESKI, NIKOLA</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5016-6389</orcidid><orcidid>https://orcid.org/0000-0002-9930-7357</orcidid><orcidid>https://orcid.org/0000-0003-3889-0048</orcidid></search><sort><creationdate>201902</creationdate><title>ON OZAKI CLOSE-TO-CONVEX FUNCTIONS</title><author>ALLU, VASUDEVARAO ; THOMAS, DEREK K. ; TUNESKI, NIKOLA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232t-50b6d410c31cd03c5ee61d47e300ede3572909ea173c83087c7b5d661399666b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Convex analysis</topic><topic>Mathematical analysis</topic><topic>Mathematical functions</topic><topic>Taylor series</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALLU, VASUDEVARAO</creatorcontrib><creatorcontrib>THOMAS, DEREK K.</creatorcontrib><creatorcontrib>TUNESKI, NIKOLA</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALLU, VASUDEVARAO</au><au>THOMAS, DEREK K.</au><au>TUNESKI, NIKOLA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON OZAKI CLOSE-TO-CONVEX FUNCTIONS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2019-02</date><risdate>2019</risdate><volume>99</volume><issue>1</issue><spage>89</spage><epage>100</epage><pages>89-100</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Let
$f$
be analytic in
$\mathbb{D}=\{z\in \mathbb{C}:|z|<1\}$
and given by
$f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$
. We give sharp bounds for the initial coefficients of the Taylor expansion of such functions in the class of strongly Ozaki close-to-convex functions, and of the initial coefficients of the inverse function, together with some growth estimates.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972718000989</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5016-6389</orcidid><orcidid>https://orcid.org/0000-0002-9930-7357</orcidid><orcidid>https://orcid.org/0000-0003-3889-0048</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2019-02, Vol.99 (1), p.89-100 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2787019089 |
source | Cambridge Journals |
subjects | Convex analysis Mathematical analysis Mathematical functions Taylor series Thermal expansion |
title | ON OZAKI CLOSE-TO-CONVEX FUNCTIONS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T16%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20OZAKI%20CLOSE-TO-CONVEX%20FUNCTIONS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=ALLU,%20VASUDEVARAO&rft.date=2019-02&rft.volume=99&rft.issue=1&rft.spage=89&rft.epage=100&rft.pages=89-100&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972718000989&rft_dat=%3Cproquest_cross%3E2787019089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787019089&rft_id=info:pmid/&rft_cupid=10_1017_S0004972718000989&rfr_iscdi=true |