TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS

Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2018-04, Vol.97 (2), p.253-264
Hauptverfasser: ALI, MD FIROZ, THOMAS, D. K., VASUDEVARAO, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue 2
container_start_page 253
container_title Bulletin of the Australian Mathematical Society
container_volume 97
creator ALI, MD FIROZ
THOMAS, D. K.
VASUDEVARAO, A.
description Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|
doi_str_mv 10.1017/S0004972717001174
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787011414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972717001174</cupid><sourcerecordid>2787011414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-2c35b23f9b9a63e1abe990daf69262563f159cb0a2a16af4fe80283b50b332003</originalsourceid><addsrcrecordid>eNp1UEtOwzAQtRBIlMIB2EViHfDYcZwso9ShltIENS4IFkROGqNWlBanXXAbzsLJSGglFojVzJv3GekhdAn4GjDwmwJj7IWccOAYA3DvCA2AM-aCT-kxGvS02_On6Kxtlx1ijAQD9KxycZdK9eSMhBLTicyiTBXOwzgvhCNSMRE9jKbCUWPhxLlIEhnLn2OeOFEWpY9Kxt0ycmaZvI_Sjvr6TGZZrGSeFefoxOjXtrk4zCGaJULFYzfNb2UcpW5NgW9dUlNWEWrCKtQ-bUBXTRjiuTZ-SHzCfGqAhXWFNdHga-OZJsAkoBXDFaUEYzpEV_vcjV2_75p2Wy7XO_vWvSwJD3jXiAdep4K9qrbrtrWNKTd2sdL2owRc9jWWf2rsPPTg0avKLuYvzW_0_65vwH9r1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787011414</pqid></control><display><type>article</type><title>TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS</title><source>Cambridge University Press Journals Complete</source><creator>ALI, MD FIROZ ; THOMAS, D. K. ; VASUDEVARAO, A.</creator><creatorcontrib>ALI, MD FIROZ ; THOMAS, D. K. ; VASUDEVARAO, A.</creatorcontrib><description>Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|&lt;1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ . We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972717001174</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Convex analysis ; Mathematical analysis</subject><ispartof>Bulletin of the Australian Mathematical Society, 2018-04, Vol.97 (2), p.253-264</ispartof><rights>2018 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-2c35b23f9b9a63e1abe990daf69262563f159cb0a2a16af4fe80283b50b332003</citedby><cites>FETCH-LOGICAL-c317t-2c35b23f9b9a63e1abe990daf69262563f159cb0a2a16af4fe80283b50b332003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972717001174/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>ALI, MD FIROZ</creatorcontrib><creatorcontrib>THOMAS, D. K.</creatorcontrib><creatorcontrib>VASUDEVARAO, A.</creatorcontrib><title>TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|&lt;1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ . We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.</description><subject>Applied mathematics</subject><subject>Convex analysis</subject><subject>Mathematical analysis</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UEtOwzAQtRBIlMIB2EViHfDYcZwso9ShltIENS4IFkROGqNWlBanXXAbzsLJSGglFojVzJv3GekhdAn4GjDwmwJj7IWccOAYA3DvCA2AM-aCT-kxGvS02_On6Kxtlx1ijAQD9KxycZdK9eSMhBLTicyiTBXOwzgvhCNSMRE9jKbCUWPhxLlIEhnLn2OeOFEWpY9Kxt0ycmaZvI_Sjvr6TGZZrGSeFefoxOjXtrk4zCGaJULFYzfNb2UcpW5NgW9dUlNWEWrCKtQ-bUBXTRjiuTZ-SHzCfGqAhXWFNdHga-OZJsAkoBXDFaUEYzpEV_vcjV2_75p2Wy7XO_vWvSwJD3jXiAdep4K9qrbrtrWNKTd2sdL2owRc9jWWf2rsPPTg0avKLuYvzW_0_65vwH9r1A</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>ALI, MD FIROZ</creator><creator>THOMAS, D. K.</creator><creator>VASUDEVARAO, A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201804</creationdate><title>TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS</title><author>ALI, MD FIROZ ; THOMAS, D. K. ; VASUDEVARAO, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-2c35b23f9b9a63e1abe990daf69262563f159cb0a2a16af4fe80283b50b332003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Convex analysis</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ALI, MD FIROZ</creatorcontrib><creatorcontrib>THOMAS, D. K.</creatorcontrib><creatorcontrib>VASUDEVARAO, A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ALI, MD FIROZ</au><au>THOMAS, D. K.</au><au>VASUDEVARAO, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2018-04</date><risdate>2018</risdate><volume>97</volume><issue>2</issue><spage>253</spage><epage>264</epage><pages>253-264</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Let ${\mathcal{S}}$ denote the class of analytic and univalent functions in $\mathbb{D}:=\{z\in \mathbb{C}:|z|&lt;1\}$ which are of the form $f(z)=z+\sum _{n=2}^{\infty }a_{n}z^{n}$ . We determine sharp estimates for the Toeplitz determinants whose elements are the Taylor coefficients of functions in ${\mathcal{S}}$ and certain of its subclasses. We also discuss similar problems for typically real functions.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972717001174</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2018-04, Vol.97 (2), p.253-264
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2787011414
source Cambridge University Press Journals Complete
subjects Applied mathematics
Convex analysis
Mathematical analysis
title TOEPLITZ DETERMINANTS WHOSE ELEMENTS ARE THE COEFFICIENTS OF ANALYTIC AND UNIVALENT FUNCTIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A06%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TOEPLITZ%20DETERMINANTS%20WHOSE%20ELEMENTS%20ARE%20THE%20COEFFICIENTS%20OF%20ANALYTIC%20AND%20UNIVALENT%C2%A0FUNCTIONS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=ALI,%20MD%20FIROZ&rft.date=2018-04&rft.volume=97&rft.issue=2&rft.spage=253&rft.epage=264&rft.pages=253-264&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972717001174&rft_dat=%3Cproquest_cross%3E2787011414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787011414&rft_id=info:pmid/&rft_cupid=10_1017_S0004972717001174&rfr_iscdi=true