Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws

Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity appr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-04, Vol.46 (6), p.7265-7284
Hauptverfasser: Chhatria, Balakrishna, Sen, Anupam, Raja Sekhar, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7284
container_issue 6
container_start_page 7265
container_title Mathematical methods in the applied sciences
container_volume 46
creator Chhatria, Balakrishna
Sen, Anupam
Raja Sekhar, T.
description Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.
doi_str_mv 10.1002/mma.8969
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787008389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787008389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZrLb3c2xFK1Ci-DHOWSzWZqS3axJ2rI3H8Fn9ElMrVdPgeE3M5k_QtdAJkAIvWtbMSlZzk7QCAhjCWRFfopGBAqSZBSyc3Th_YYQUgLQEepelWm-P7-8brURDu-0l9brMGDR984KucbB4rBW-EWrVnQdjtXKqBY31mGBfXBaBjPg9dArV1mjJfaDDxHYBkvbeeV2ImjbYSP2_hKdNcJ4dfX3jtH7w_3b_DFZPi-e5rNlIilLWcJSwnJR0ApULQSUKdQVoyrNZEVzKWkhWFPlOQOqGM1BTGVasqJKKdQwlXWZjtHNcW787cdW-cA3duu6uJLToizi9bEhqtujks5671TDe6db4QYOhB_S5DFNfkgz0uRI99qo4V_HV6vZr_8BgFJ4hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787008389</pqid></control><display><type>article</type><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><source>Wiley-Blackwell Journals</source><creator>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</creator><creatorcontrib>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</creatorcontrib><description>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8969</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Cauchy problems ; Conservation laws ; delta shock wave ; Entropy of solution ; Gas dynamics ; Hyperbolic systems ; Nonlinear dynamics ; Perturbation ; Riemann problem ; self‐similar vanishing viscosity ; strictly hyperbolic system ; Viscosity</subject><ispartof>Mathematical methods in the applied sciences, 2023-04, Vol.46 (6), p.7265-7284</ispartof><rights>2022 John Wiley &amp; Sons, Ltd.</rights><rights>2023 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</citedby><cites>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</cites><orcidid>0000-0002-4785-2134 ; 0000-0002-6207-9231 ; 0000-0003-3463-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chhatria, Balakrishna</creatorcontrib><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><title>Mathematical methods in the applied sciences</title><description>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</description><subject>Cauchy problems</subject><subject>Conservation laws</subject><subject>delta shock wave</subject><subject>Entropy of solution</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Nonlinear dynamics</subject><subject>Perturbation</subject><subject>Riemann problem</subject><subject>self‐similar vanishing viscosity</subject><subject>strictly hyperbolic system</subject><subject>Viscosity</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZrLb3c2xFK1Ci-DHOWSzWZqS3axJ2rI3H8Fn9ElMrVdPgeE3M5k_QtdAJkAIvWtbMSlZzk7QCAhjCWRFfopGBAqSZBSyc3Th_YYQUgLQEepelWm-P7-8brURDu-0l9brMGDR984KucbB4rBW-EWrVnQdjtXKqBY31mGBfXBaBjPg9dArV1mjJfaDDxHYBkvbeeV2ImjbYSP2_hKdNcJ4dfX3jtH7w_3b_DFZPi-e5rNlIilLWcJSwnJR0ApULQSUKdQVoyrNZEVzKWkhWFPlOQOqGM1BTGVasqJKKdQwlXWZjtHNcW787cdW-cA3duu6uJLToizi9bEhqtujks5671TDe6db4QYOhB_S5DFNfkgz0uRI99qo4V_HV6vZr_8BgFJ4hg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chhatria, Balakrishna</creator><creator>Sen, Anupam</creator><creator>Raja Sekhar, T.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0002-6207-9231</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></search><sort><creationdate>202304</creationdate><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><author>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problems</topic><topic>Conservation laws</topic><topic>delta shock wave</topic><topic>Entropy of solution</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Nonlinear dynamics</topic><topic>Perturbation</topic><topic>Riemann problem</topic><topic>self‐similar vanishing viscosity</topic><topic>strictly hyperbolic system</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhatria, Balakrishna</creatorcontrib><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhatria, Balakrishna</au><au>Sen, Anupam</au><au>Raja Sekhar, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-04</date><risdate>2023</risdate><volume>46</volume><issue>6</issue><spage>7265</spage><epage>7284</epage><pages>7265-7284</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8969</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0002-6207-9231</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2023-04, Vol.46 (6), p.7265-7284
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2787008389
source Wiley-Blackwell Journals
subjects Cauchy problems
Conservation laws
delta shock wave
Entropy of solution
Gas dynamics
Hyperbolic systems
Nonlinear dynamics
Perturbation
Riemann problem
self‐similar vanishing viscosity
strictly hyperbolic system
Viscosity
title Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90similar%20viscosity%20approach%20to%20the%20Riemann%20problem%20for%20a%20strictly%20hyperbolic%20system%20of%20conservation%20laws&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Chhatria,%20Balakrishna&rft.date=2023-04&rft.volume=46&rft.issue=6&rft.spage=7265&rft.epage=7284&rft.pages=7265-7284&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8969&rft_dat=%3Cproquest_cross%3E2787008389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787008389&rft_id=info:pmid/&rfr_iscdi=true