Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws
Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity appr...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-04, Vol.46 (6), p.7265-7284 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7284 |
---|---|
container_issue | 6 |
container_start_page | 7265 |
container_title | Mathematical methods in the applied sciences |
container_volume | 46 |
creator | Chhatria, Balakrishna Sen, Anupam Raja Sekhar, T. |
description | Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution. |
doi_str_mv | 10.1002/mma.8969 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2787008389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787008389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</originalsourceid><addsrcrecordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZrLb3c2xFK1Ci-DHOWSzWZqS3axJ2rI3H8Fn9ElMrVdPgeE3M5k_QtdAJkAIvWtbMSlZzk7QCAhjCWRFfopGBAqSZBSyc3Th_YYQUgLQEepelWm-P7-8brURDu-0l9brMGDR984KucbB4rBW-EWrVnQdjtXKqBY31mGBfXBaBjPg9dArV1mjJfaDDxHYBkvbeeV2ImjbYSP2_hKdNcJ4dfX3jtH7w_3b_DFZPi-e5rNlIilLWcJSwnJR0ApULQSUKdQVoyrNZEVzKWkhWFPlOQOqGM1BTGVasqJKKdQwlXWZjtHNcW787cdW-cA3duu6uJLToizi9bEhqtujks5671TDe6db4QYOhB_S5DFNfkgz0uRI99qo4V_HV6vZr_8BgFJ4hg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787008389</pqid></control><display><type>article</type><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><source>Wiley-Blackwell Journals</source><creator>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</creator><creatorcontrib>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</creatorcontrib><description>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.8969</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Cauchy problems ; Conservation laws ; delta shock wave ; Entropy of solution ; Gas dynamics ; Hyperbolic systems ; Nonlinear dynamics ; Perturbation ; Riemann problem ; self‐similar vanishing viscosity ; strictly hyperbolic system ; Viscosity</subject><ispartof>Mathematical methods in the applied sciences, 2023-04, Vol.46 (6), p.7265-7284</ispartof><rights>2022 John Wiley & Sons, Ltd.</rights><rights>2023 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</citedby><cites>FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</cites><orcidid>0000-0002-4785-2134 ; 0000-0002-6207-9231 ; 0000-0003-3463-758X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.8969$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.8969$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chhatria, Balakrishna</creatorcontrib><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><title>Mathematical methods in the applied sciences</title><description>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</description><subject>Cauchy problems</subject><subject>Conservation laws</subject><subject>delta shock wave</subject><subject>Entropy of solution</subject><subject>Gas dynamics</subject><subject>Hyperbolic systems</subject><subject>Nonlinear dynamics</subject><subject>Perturbation</subject><subject>Riemann problem</subject><subject>self‐similar vanishing viscosity</subject><subject>strictly hyperbolic system</subject><subject>Viscosity</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp10M1KAzEQB_AgCtYq-AgBL162ZrLb3c2xFK1Ci-DHOWSzWZqS3axJ2rI3H8Fn9ElMrVdPgeE3M5k_QtdAJkAIvWtbMSlZzk7QCAhjCWRFfopGBAqSZBSyc3Th_YYQUgLQEepelWm-P7-8brURDu-0l9brMGDR984KucbB4rBW-EWrVnQdjtXKqBY31mGBfXBaBjPg9dArV1mjJfaDDxHYBkvbeeV2ImjbYSP2_hKdNcJ4dfX3jtH7w_3b_DFZPi-e5rNlIilLWcJSwnJR0ApULQSUKdQVoyrNZEVzKWkhWFPlOQOqGM1BTGVasqJKKdQwlXWZjtHNcW787cdW-cA3duu6uJLToizi9bEhqtujks5671TDe6db4QYOhB_S5DFNfkgz0uRI99qo4V_HV6vZr_8BgFJ4hg</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Chhatria, Balakrishna</creator><creator>Sen, Anupam</creator><creator>Raja Sekhar, T.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0002-6207-9231</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></search><sort><creationdate>202304</creationdate><title>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</title><author>Chhatria, Balakrishna ; Sen, Anupam ; Raja Sekhar, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2939-93096a72b1edaa1831db92e34cb26cc27a9fb66912e9261a5c3897b321d15cd83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy problems</topic><topic>Conservation laws</topic><topic>delta shock wave</topic><topic>Entropy of solution</topic><topic>Gas dynamics</topic><topic>Hyperbolic systems</topic><topic>Nonlinear dynamics</topic><topic>Perturbation</topic><topic>Riemann problem</topic><topic>self‐similar vanishing viscosity</topic><topic>strictly hyperbolic system</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhatria, Balakrishna</creatorcontrib><creatorcontrib>Sen, Anupam</creatorcontrib><creatorcontrib>Raja Sekhar, T.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chhatria, Balakrishna</au><au>Sen, Anupam</au><au>Raja Sekhar, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2023-04</date><risdate>2023</risdate><volume>46</volume><issue>6</issue><spage>7265</spage><epage>7284</epage><pages>7265-7284</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>Here, we study the Riemann problem for a strictly hyperbolic system of conservation laws, which occurs in gas dynamics and nonlinear elasticity. We establish the existence and uniqueness of the solution of Riemann problem containing delta shock wave by employing self‐similar vanishing viscosity approach. We prove that delta shock is stable under self‐similar viscosity perturbation, which ensures that delta shock wave is a unique entropy solution.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.8969</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4785-2134</orcidid><orcidid>https://orcid.org/0000-0002-6207-9231</orcidid><orcidid>https://orcid.org/0000-0003-3463-758X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2023-04, Vol.46 (6), p.7265-7284 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2787008389 |
source | Wiley-Blackwell Journals |
subjects | Cauchy problems Conservation laws delta shock wave Entropy of solution Gas dynamics Hyperbolic systems Nonlinear dynamics Perturbation Riemann problem self‐similar vanishing viscosity strictly hyperbolic system Viscosity |
title | Self‐similar viscosity approach to the Riemann problem for a strictly hyperbolic system of conservation laws |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A18%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self%E2%80%90similar%20viscosity%20approach%20to%20the%20Riemann%20problem%20for%20a%20strictly%20hyperbolic%20system%20of%20conservation%20laws&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Chhatria,%20Balakrishna&rft.date=2023-04&rft.volume=46&rft.issue=6&rft.spage=7265&rft.epage=7284&rft.pages=7265-7284&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.8969&rft_dat=%3Cproquest_cross%3E2787008389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787008389&rft_id=info:pmid/&rfr_iscdi=true |