ON A CLASS OF SUPERSOLUBLE GROUPS

A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2014-10, Vol.90 (2), p.220-226
Hauptverfasser: BALLESTER-BOLINCHES, A., BEIDLEMAN, J. C., ESTEBAN-ROMERO, R., RAGLAND, M. F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 2
container_start_page 220
container_title Bulletin of the Australian Mathematical Society
container_volume 90
creator BALLESTER-BOLINCHES, A.
BEIDLEMAN, J. C.
ESTEBAN-ROMERO, R.
RAGLAND, M. F.
description A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.
doi_str_mv 10.1017/S0004972714000306
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786979442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972714000306</cupid><sourcerecordid>2786979442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-864807051a4ffcea229d38cb10ebd3d4f8d8bd2de0aaab58bcba971474064b023</originalsourceid><addsrcrecordid>eNp1UM1LwzAUD6Jgnf4B3iqeqy8fbdJjLd0Uih2LPYekSWXD2ZlsB_97WzbwIJ7ee_y-Hj-EbjE8YMD8UQIAyznhmI0bhewMRZinaYIzSs9RNMHJhF-iqxA245WmRETornmNi7isCynjZh7LdlmtZFO3T3UVL1ZNu5TX6KLXH8HdnOYMtfPqrXxO6mbxUhZ10jEK-0RkTACHFGvW953ThOSWis5gcMZSy3phhbHEOtBam1SYzuh8_JYzyJgBQmfo_ui788PXwYW92gwH_zlGKsJFlvOcsYmFj6zODyF416udX2-1_1YY1NSE-tPEqKEnjd4av7bv7tf6f9UPnt1arw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786979442</pqid></control><display><type>article</type><title>ON A CLASS OF SUPERSOLUBLE GROUPS</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge Journals</source><creator>BALLESTER-BOLINCHES, A. ; BEIDLEMAN, J. C. ; ESTEBAN-ROMERO, R. ; RAGLAND, M. F.</creator><creatorcontrib>BALLESTER-BOLINCHES, A. ; BEIDLEMAN, J. C. ; ESTEBAN-ROMERO, R. ; RAGLAND, M. F.</creatorcontrib><description>A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972714000306</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 2014-10, Vol.90 (2), p.220-226</ispartof><rights>Copyright © 2014 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-864807051a4ffcea229d38cb10ebd3d4f8d8bd2de0aaab58bcba971474064b023</citedby><cites>FETCH-LOGICAL-c430t-864807051a4ffcea229d38cb10ebd3d4f8d8bd2de0aaab58bcba971474064b023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972714000306/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids></links><search><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>BEIDLEMAN, J. C.</creatorcontrib><creatorcontrib>ESTEBAN-ROMERO, R.</creatorcontrib><creatorcontrib>RAGLAND, M. F.</creatorcontrib><title>ON A CLASS OF SUPERSOLUBLE GROUPS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UM1LwzAUD6Jgnf4B3iqeqy8fbdJjLd0Uih2LPYekSWXD2ZlsB_97WzbwIJ7ee_y-Hj-EbjE8YMD8UQIAyznhmI0bhewMRZinaYIzSs9RNMHJhF-iqxA245WmRETornmNi7isCynjZh7LdlmtZFO3T3UVL1ZNu5TX6KLXH8HdnOYMtfPqrXxO6mbxUhZ10jEK-0RkTACHFGvW953ThOSWis5gcMZSy3phhbHEOtBam1SYzuh8_JYzyJgBQmfo_ui788PXwYW92gwH_zlGKsJFlvOcsYmFj6zODyF416udX2-1_1YY1NSE-tPEqKEnjd4av7bv7tf6f9UPnt1arw</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>BALLESTER-BOLINCHES, A.</creator><creator>BEIDLEMAN, J. C.</creator><creator>ESTEBAN-ROMERO, R.</creator><creator>RAGLAND, M. F.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>ON A CLASS OF SUPERSOLUBLE GROUPS</title><author>BALLESTER-BOLINCHES, A. ; BEIDLEMAN, J. C. ; ESTEBAN-ROMERO, R. ; RAGLAND, M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-864807051a4ffcea229d38cb10ebd3d4f8d8bd2de0aaab58bcba971474064b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>BEIDLEMAN, J. C.</creatorcontrib><creatorcontrib>ESTEBAN-ROMERO, R.</creatorcontrib><creatorcontrib>RAGLAND, M. F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALLESTER-BOLINCHES, A.</au><au>BEIDLEMAN, J. C.</au><au>ESTEBAN-ROMERO, R.</au><au>RAGLAND, M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON A CLASS OF SUPERSOLUBLE GROUPS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>90</volume><issue>2</issue><spage>220</spage><epage>226</epage><pages>220-226</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>A subgroup $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}H$ of a finite group $G$ is said to be S-semipermutable in $G$ if $H$ permutes with every Sylow $q$-subgroup of $G$ for all primes $q$ not dividing $|H |$. A finite group $G$ is an MS-group if the maximal subgroups of all the Sylow subgroups of $G$ are S-semipermutable in $G$. The aim of the present paper is to characterise the finite MS-groups.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972714000306</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2014-10, Vol.90 (2), p.220-226
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786979442
source EZB-FREE-00999 freely available EZB journals; Cambridge Journals
title ON A CLASS OF SUPERSOLUBLE GROUPS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20A%20CLASS%20OF%20SUPERSOLUBLE%20GROUPS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=BALLESTER-BOLINCHES,%20A.&rft.date=2014-10-01&rft.volume=90&rft.issue=2&rft.spage=220&rft.epage=226&rft.pages=220-226&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972714000306&rft_dat=%3Cproquest_cross%3E2786979442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786979442&rft_id=info:pmid/&rft_cupid=10_1017_S0004972714000306&rfr_iscdi=true