SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS
Assume that $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}m$ and $n$ are two positive integers which do not divide each other. If th...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2014-10, Vol.90 (2), p.250-256 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 256 |
---|---|
container_issue | 2 |
container_start_page | 250 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 90 |
creator | JIANG, QINHUI SHAO, CHANGGUO |
description | Assume that $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}m$ and $n$ are two positive integers which do not divide each other. If the set of conjugacy class sizes of primary and biprimary elements of a group $G$ is $\{1, m, n, mn\}$, we show that up to central factors $G$ is a $\{p,q\}$-group for two distinct primes $p$ and $q$. |
doi_str_mv | 10.1017/S0004972714000495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786978794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972714000495</cupid><sourcerecordid>2786978794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-71a78703f1df0283c5cd9479f1f54fbe2e6e9206c18f1430d69b9befb24c7f193</originalsourceid><addsrcrecordid>eNp1kM1LwzAYxoMoOKd_gLeA52rSNE1zrCXdIrUdS6vMS-lHIhvObel28L-3dQMP4un9en7PCw8AtxjdY4TZg0IIeZy5DHs_HT0DI8wodbBPyDkYDUtnuF-Cq65b9ROlbjACM5UlL-GjTGS-gFkMY5nKXMDJPCtmCr7KfArjrJjDKEufikkYLWCUhEpBJd-EGoBIzPNQplAk4lmkuboGF6b66PTNqY5BEYs8mjpJNpFRmDgN8dHeYbhiAUPE4NYgNyANbVruMW6woZ6ptat9zV3kNzgw2COo9XnNa21q12uYwZyMwd3Rd2s3u4Pu9uVqc7Cf_cvSZYHPe3fu9Sp8VDV203VWm3Jrl-vKfpUYlUNw5Z_geoacmGpd22X7rn-t_6e-AR0bZ2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786978794</pqid></control><display><type>article</type><title>SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals</source><creator>JIANG, QINHUI ; SHAO, CHANGGUO</creator><creatorcontrib>JIANG, QINHUI ; SHAO, CHANGGUO</creatorcontrib><description>Assume that $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}m$ and $n$ are two positive integers which do not divide each other. If the set of conjugacy class sizes of primary and biprimary elements of a group $G$ is $\{1, m, n, mn\}$, we show that up to central factors $G$ is a $\{p,q\}$-group for two distinct primes $p$ and $q$.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972714000495</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 2014-10, Vol.90 (2), p.250-256</ispartof><rights>Copyright © 2014 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-71a78703f1df0283c5cd9479f1f54fbe2e6e9206c18f1430d69b9befb24c7f193</citedby><cites>FETCH-LOGICAL-c360t-71a78703f1df0283c5cd9479f1f54fbe2e6e9206c18f1430d69b9befb24c7f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972714000495/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>JIANG, QINHUI</creatorcontrib><creatorcontrib>SHAO, CHANGGUO</creatorcontrib><title>SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>Assume that $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}m$ and $n$ are two positive integers which do not divide each other. If the set of conjugacy class sizes of primary and biprimary elements of a group $G$ is $\{1, m, n, mn\}$, we show that up to central factors $G$ is a $\{p,q\}$-group for two distinct primes $p$ and $q$.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LwzAYxoMoOKd_gLeA52rSNE1zrCXdIrUdS6vMS-lHIhvObel28L-3dQMP4un9en7PCw8AtxjdY4TZg0IIeZy5DHs_HT0DI8wodbBPyDkYDUtnuF-Cq65b9ROlbjACM5UlL-GjTGS-gFkMY5nKXMDJPCtmCr7KfArjrJjDKEufikkYLWCUhEpBJd-EGoBIzPNQplAk4lmkuboGF6b66PTNqY5BEYs8mjpJNpFRmDgN8dHeYbhiAUPE4NYgNyANbVruMW6woZ6ptat9zV3kNzgw2COo9XnNa21q12uYwZyMwd3Rd2s3u4Pu9uVqc7Cf_cvSZYHPe3fu9Sp8VDV203VWm3Jrl-vKfpUYlUNw5Z_geoacmGpd22X7rn-t_6e-AR0bZ2A</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>JIANG, QINHUI</creator><creator>SHAO, CHANGGUO</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141001</creationdate><title>SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS</title><author>JIANG, QINHUI ; SHAO, CHANGGUO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-71a78703f1df0283c5cd9479f1f54fbe2e6e9206c18f1430d69b9befb24c7f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JIANG, QINHUI</creatorcontrib><creatorcontrib>SHAO, CHANGGUO</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JIANG, QINHUI</au><au>SHAO, CHANGGUO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>90</volume><issue>2</issue><spage>250</spage><epage>256</epage><pages>250-256</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Assume that $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}m$ and $n$ are two positive integers which do not divide each other. If the set of conjugacy class sizes of primary and biprimary elements of a group $G$ is $\{1, m, n, mn\}$, we show that up to central factors $G$ is a $\{p,q\}$-group for two distinct primes $p$ and $q$.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972714000495</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2014-10, Vol.90 (2), p.250-256 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2786978794 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals |
title | SOLVABILITY OF FINITE GROUPS WITH FOUR CONJUGACY CLASS SIZES OF CERTAIN ELEMENTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A25%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SOLVABILITY%20OF%20FINITE%20GROUPS%20WITH%20FOUR%20CONJUGACY%20CLASS%20SIZES%20OF%20CERTAIN%20ELEMENTS&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=JIANG,%20QINHUI&rft.date=2014-10-01&rft.volume=90&rft.issue=2&rft.spage=250&rft.epage=256&rft.pages=250-256&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972714000495&rft_dat=%3Cproquest_cross%3E2786978794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786978794&rft_id=info:pmid/&rft_cupid=10_1017_S0004972714000495&rfr_iscdi=true |