Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach
This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustn...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-04, Vol.8 (4), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Zhang, Haoyu Cheng, Long Zhang, Yu |
description | This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9\%) and the noisy condition (by approximately 17.8\%) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises. |
doi_str_mv | 10.1109/LRA.2023.3251190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2786972897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057090</ieee_id><sourcerecordid>2786972897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhYMoWGr3LlwEXKfe-Umm4y7U-gMRpeo6TJI7dkrNtDMToW_js_hkpraLru6Bc8498EXRJYExISBvink-pkDZmNGUEAkn0YAyIRImsuz0SJ9HI--XAEBSKphMB1FVoHKtaT_jua06H-JXa9qQBJv8i_jZBmNbH-fNNzqvnFGr1fY2zuO3YOuF8sHU8Z3RGh22oTfj2aZTu8rvT75eO6vqxUV0ptXK4-hwh9HH_ex9-pgULw9P07xIasrTkGDDOJmkGW_STFPBNdG0kSi5gAopCEZpwxXhFKCWFFHpCllWpTVWvIGGsWF0vf_bz2469KFc2s61_WRJxSSTgk6k6FOwT9XOeu9Ql2tnvpTblgTKHcyyh1nuYJYHmH3lal8xiHgUh1RAb_8BjglxZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786972897</pqid></control><display><type>article</type><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</creator><creatorcontrib>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</creatorcontrib><description><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3251190</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; adversarial method ; Differential equations ; Dynamic models ; Dynamical systems ; Learning ; learning from demonstrations ; Lyapunov methods ; Mathematical models ; Model accuracy ; Perturbation methods ; Point-to-point task ; Robustness (mathematics) ; stochastic differential equation ; Stochastic processes ; Training ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</cites><orcidid>0000-0001-7565-8788 ; 0009-0004-3227-7159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10057090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></description><subject>Accuracy</subject><subject>adversarial method</subject><subject>Differential equations</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Learning</subject><subject>learning from demonstrations</subject><subject>Lyapunov methods</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Perturbation methods</subject><subject>Point-to-point task</subject><subject>Robustness (mathematics)</subject><subject>stochastic differential equation</subject><subject>Stochastic processes</subject><subject>Training</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhYMoWGr3LlwEXKfe-Umm4y7U-gMRpeo6TJI7dkrNtDMToW_js_hkpraLru6Bc8498EXRJYExISBvink-pkDZmNGUEAkn0YAyIRImsuz0SJ9HI--XAEBSKphMB1FVoHKtaT_jua06H-JXa9qQBJv8i_jZBmNbH-fNNzqvnFGr1fY2zuO3YOuF8sHU8Z3RGh22oTfj2aZTu8rvT75eO6vqxUV0ptXK4-hwh9HH_ex9-pgULw9P07xIasrTkGDDOJmkGW_STFPBNdG0kSi5gAopCEZpwxXhFKCWFFHpCllWpTVWvIGGsWF0vf_bz2469KFc2s61_WRJxSSTgk6k6FOwT9XOeu9Ql2tnvpTblgTKHcyyh1nuYJYHmH3lal8xiHgUh1RAb_8BjglxZQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Haoyu</creator><creator>Cheng, Long</creator><creator>Zhang, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0009-0004-3227-7159</orcidid></search><sort><creationdate>20230401</creationdate><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><author>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>adversarial method</topic><topic>Differential equations</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Learning</topic><topic>learning from demonstrations</topic><topic>Lyapunov methods</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Perturbation methods</topic><topic>Point-to-point task</topic><topic>Robustness (mathematics)</topic><topic>stochastic differential equation</topic><topic>Stochastic processes</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haoyu</au><au>Cheng, Long</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3251190</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0009-0004-3227-7159</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2786972897 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy adversarial method Differential equations Dynamic models Dynamical systems Learning learning from demonstrations Lyapunov methods Mathematical models Model accuracy Perturbation methods Point-to-point task Robustness (mathematics) stochastic differential equation Stochastic processes Training Trajectory |
title | Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Robust%20Point-to-Point%20Motions%20Adversarially:%20A%20Stochastic%20Differential%20Equation%C2%A0Approach&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhang,%20Haoyu&rft.date=2023-04-01&rft.volume=8&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3251190&rft_dat=%3Cproquest_RIE%3E2786972897%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786972897&rft_id=info:pmid/&rft_ieee_id=10057090&rfr_iscdi=true |