Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach

This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-04, Vol.8 (4), p.1-8
Hauptverfasser: Zhang, Haoyu, Cheng, Long, Zhang, Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Zhang, Haoyu
Cheng, Long
Zhang, Yu
description This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9\%) and the noisy condition (by approximately 17.8\%) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.
doi_str_mv 10.1109/LRA.2023.3251190
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2786972897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057090</ieee_id><sourcerecordid>2786972897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhYMoWGr3LlwEXKfe-Umm4y7U-gMRpeo6TJI7dkrNtDMToW_js_hkpraLru6Bc8498EXRJYExISBvink-pkDZmNGUEAkn0YAyIRImsuz0SJ9HI--XAEBSKphMB1FVoHKtaT_jua06H-JXa9qQBJv8i_jZBmNbH-fNNzqvnFGr1fY2zuO3YOuF8sHU8Z3RGh22oTfj2aZTu8rvT75eO6vqxUV0ptXK4-hwh9HH_ex9-pgULw9P07xIasrTkGDDOJmkGW_STFPBNdG0kSi5gAopCEZpwxXhFKCWFFHpCllWpTVWvIGGsWF0vf_bz2469KFc2s61_WRJxSSTgk6k6FOwT9XOeu9Ql2tnvpTblgTKHcyyh1nuYJYHmH3lal8xiHgUh1RAb_8BjglxZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786972897</pqid></control><display><type>article</type><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</creator><creatorcontrib>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</creatorcontrib><description><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3251190</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Accuracy ; adversarial method ; Differential equations ; Dynamic models ; Dynamical systems ; Learning ; learning from demonstrations ; Lyapunov methods ; Mathematical models ; Model accuracy ; Perturbation methods ; Point-to-point task ; Robustness (mathematics) ; stochastic differential equation ; Stochastic processes ; Training ; Trajectory</subject><ispartof>IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</cites><orcidid>0000-0001-7565-8788 ; 0009-0004-3227-7159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057090$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10057090$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></description><subject>Accuracy</subject><subject>adversarial method</subject><subject>Differential equations</subject><subject>Dynamic models</subject><subject>Dynamical systems</subject><subject>Learning</subject><subject>learning from demonstrations</subject><subject>Lyapunov methods</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Perturbation methods</subject><subject>Point-to-point task</subject><subject>Robustness (mathematics)</subject><subject>stochastic differential equation</subject><subject>Stochastic processes</subject><subject>Training</subject><subject>Trajectory</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Kw0AUhYMoWGr3LlwEXKfe-Umm4y7U-gMRpeo6TJI7dkrNtDMToW_js_hkpraLru6Bc8498EXRJYExISBvink-pkDZmNGUEAkn0YAyIRImsuz0SJ9HI--XAEBSKphMB1FVoHKtaT_jua06H-JXa9qQBJv8i_jZBmNbH-fNNzqvnFGr1fY2zuO3YOuF8sHU8Z3RGh22oTfj2aZTu8rvT75eO6vqxUV0ptXK4-hwh9HH_ex9-pgULw9P07xIasrTkGDDOJmkGW_STFPBNdG0kSi5gAopCEZpwxXhFKCWFFHpCllWpTVWvIGGsWF0vf_bz2469KFc2s61_WRJxSSTgk6k6FOwT9XOeu9Ql2tnvpTblgTKHcyyh1nuYJYHmH3lal8xiHgUh1RAb_8BjglxZQ</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Zhang, Haoyu</creator><creator>Cheng, Long</creator><creator>Zhang, Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0009-0004-3227-7159</orcidid></search><sort><creationdate>20230401</creationdate><title>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</title><author>Zhang, Haoyu ; Cheng, Long ; Zhang, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-ed3418564d56f274f1f2d9e9470be207322d4a14200c92eeafbe36b5ceb4d0d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>adversarial method</topic><topic>Differential equations</topic><topic>Dynamic models</topic><topic>Dynamical systems</topic><topic>Learning</topic><topic>learning from demonstrations</topic><topic>Lyapunov methods</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Perturbation methods</topic><topic>Point-to-point task</topic><topic>Robustness (mathematics)</topic><topic>stochastic differential equation</topic><topic>Stochastic processes</topic><topic>Training</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Haoyu</creatorcontrib><creatorcontrib>Cheng, Long</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Haoyu</au><au>Cheng, Long</au><au>Zhang, Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract><![CDATA[This paper proposes a robust stochastic differential equation approach for learning point-to-point motions in an adversarial way. The proposed stochastic dynamical model combines the advantages of the stochastic differential equation and the transformer-like function together to achieve both robustness and accuracy of the learning. The adversarial training method is proposed to simplify the way of updating the parameters of the model. The state of the proposed stochastic dynamical system is mathematically proved to converge asymptotically in the mean square sense, and it has been experimentally validated on the LASA dataset and by the trajectory-programming task of the Franka Emika robot. The experimental results show that: (1) the adversarial training method helps the model to achieve higher reproduction accuracy; (2) the trajectories generated by the proposed model achieve higher accuracy in both the noise-free condition (by approximately 14.9<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) and the noisy condition (by approximately 17.8<inline-formula><tex-math notation="LaTeX">\%</tex-math></inline-formula>) compared with the state-of-the-art methods in terms of the similarity to the demonstration; and (3) the proposed approach can learn smoother trajectories even if the observations are contaminated by noises.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3251190</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7565-8788</orcidid><orcidid>https://orcid.org/0009-0004-3227-7159</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2786972897
source IEEE Electronic Library (IEL)
subjects Accuracy
adversarial method
Differential equations
Dynamic models
Dynamical systems
Learning
learning from demonstrations
Lyapunov methods
Mathematical models
Model accuracy
Perturbation methods
Point-to-point task
Robustness (mathematics)
stochastic differential equation
Stochastic processes
Training
Trajectory
title Learning Robust Point-to-Point Motions Adversarially: A Stochastic Differential Equation Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T16%3A10%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20Robust%20Point-to-Point%20Motions%20Adversarially:%20A%20Stochastic%20Differential%20Equation%C2%A0Approach&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Zhang,%20Haoyu&rft.date=2023-04-01&rft.volume=8&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3251190&rft_dat=%3Cproquest_RIE%3E2786972897%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786972897&rft_id=info:pmid/&rft_ieee_id=10057090&rfr_iscdi=true