ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives

Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2023-04, Vol.8 (4), p.1-8
Hauptverfasser: Li, Ge, Jin, Zeqi, Volpp, Michael, Otto, Fabian, Lioutikov, Rudolf, Neumann, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 4
container_start_page 1
container_title IEEE robotics and automation letters
container_volume 8
creator Li, Ge
Jin, Zeqi
Volpp, Michael
Otto, Fabian
Lioutikov, Rudolf
Neumann, Gerhard
description Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .
doi_str_mv 10.1109/LRA.2023.3248443
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2786972444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050558</ieee_id><sourcerecordid>2786972444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</originalsourceid><addsrcrecordid>eNpNkM1rAjEQxUNpoWK999DDQs9r87FJNr2J9gu0lVLPIZudQEQ3NlkL_veN6MHTDDPvvRl-CN0TPCYEq6f592RMMWVjRqu6qtgVGlAmZcmkENcX_S0apbTGGBNOJVN8gD6XMcwWy-diUqw67zy0xRJi2oHt_R8UoStmh85svS1Ml1cxNKbxG5_6PFmEP9hC1-ex3_qjPt2hG2c2CUbnOkSr15ef6Xs5_3r7mE7mpaWK9qWDWqjKOiJ4XdG6VsRK4XDLTG2k5UQ0XAE0zBGijDOGGaegwYQIoUzbtGyIHk-5uxh-95B6vQ772OWTmsqcLWmVMQwRPqlsDClFcHqXPzXxoAnWR3A6g9NHcPoMLlseThYPABdyzDHnNfsHNNxo9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786972444</pqid></control><display><type>article</type><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</creator><creatorcontrib>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</creatorcontrib><description>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3248443</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Basis functions ; Computer architecture ; Correlation ; Correlation analysis ; Cost function ; Dynamical systems ; Imitation Learning ; Iterative methods ; Machine learning ; Mathematical models ; Movement ; Movement Primitives ; Numerical integration ; Planing ; Probabilistic Learning ; Probabilistic logic ; Robots ; Statistics ; Trajectories ; Trajectory ; Trajectory Covariance Learning</subject><ispartof>IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</citedby><cites>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</cites><orcidid>0000-0001-7858-1835 ; 0000-0003-3484-1054 ; 0000-0002-8303-4999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10050558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Jin, Zeqi</creatorcontrib><creatorcontrib>Volpp, Michael</creatorcontrib><creatorcontrib>Otto, Fabian</creatorcontrib><creatorcontrib>Lioutikov, Rudolf</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</description><subject>Artificial neural networks</subject><subject>Basis functions</subject><subject>Computer architecture</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>Imitation Learning</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Movement</subject><subject>Movement Primitives</subject><subject>Numerical integration</subject><subject>Planing</subject><subject>Probabilistic Learning</subject><subject>Probabilistic logic</subject><subject>Robots</subject><subject>Statistics</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Trajectory Covariance Learning</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1rAjEQxUNpoWK999DDQs9r87FJNr2J9gu0lVLPIZudQEQ3NlkL_veN6MHTDDPvvRl-CN0TPCYEq6f592RMMWVjRqu6qtgVGlAmZcmkENcX_S0apbTGGBNOJVN8gD6XMcwWy-diUqw67zy0xRJi2oHt_R8UoStmh85svS1Ml1cxNKbxG5_6PFmEP9hC1-ex3_qjPt2hG2c2CUbnOkSr15ef6Xs5_3r7mE7mpaWK9qWDWqjKOiJ4XdG6VsRK4XDLTG2k5UQ0XAE0zBGijDOGGaegwYQIoUzbtGyIHk-5uxh-95B6vQ772OWTmsqcLWmVMQwRPqlsDClFcHqXPzXxoAnWR3A6g9NHcPoMLlseThYPABdyzDHnNfsHNNxo9g</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Ge</creator><creator>Jin, Zeqi</creator><creator>Volpp, Michael</creator><creator>Otto, Fabian</creator><creator>Lioutikov, Rudolf</creator><creator>Neumann, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7858-1835</orcidid><orcidid>https://orcid.org/0000-0003-3484-1054</orcidid><orcidid>https://orcid.org/0000-0002-8303-4999</orcidid></search><sort><creationdate>20230401</creationdate><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><author>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Basis functions</topic><topic>Computer architecture</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>Imitation Learning</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Movement</topic><topic>Movement Primitives</topic><topic>Numerical integration</topic><topic>Planing</topic><topic>Probabilistic Learning</topic><topic>Probabilistic logic</topic><topic>Robots</topic><topic>Statistics</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Trajectory Covariance Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Jin, Zeqi</creatorcontrib><creatorcontrib>Volpp, Michael</creatorcontrib><creatorcontrib>Otto, Fabian</creatorcontrib><creatorcontrib>Lioutikov, Rudolf</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ge</au><au>Jin, Zeqi</au><au>Volpp, Michael</au><au>Otto, Fabian</au><au>Lioutikov, Rudolf</au><au>Neumann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3248443</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7858-1835</orcidid><orcidid>https://orcid.org/0000-0003-3484-1054</orcidid><orcidid>https://orcid.org/0000-0002-8303-4999</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8
issn 2377-3766
2377-3766
language eng
recordid cdi_proquest_journals_2786972444
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Basis functions
Computer architecture
Correlation
Correlation analysis
Cost function
Dynamical systems
Imitation Learning
Iterative methods
Machine learning
Mathematical models
Movement
Movement Primitives
Numerical integration
Planing
Probabilistic Learning
Probabilistic logic
Robots
Statistics
Trajectories
Trajectory
Trajectory Covariance Learning
title ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProDMP:%20A%20Unified%20Perspective%20on%20Dynamic%20and%20Probabilistic%20Movement%20Primitives&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Li,%20Ge&rft.date=2023-04-01&rft.volume=8&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3248443&rft_dat=%3Cproquest_RIE%3E2786972444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786972444&rft_id=info:pmid/&rft_ieee_id=10050558&rfr_iscdi=true