ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives
Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic a...
Gespeichert in:
Veröffentlicht in: | IEEE robotics and automation letters 2023-04, Vol.8 (4), p.1-8 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE robotics and automation letters |
container_volume | 8 |
creator | Li, Ge Jin, Zeqi Volpp, Michael Otto, Fabian Lioutikov, Rudolf Neumann, Gerhard |
description | Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL . |
doi_str_mv | 10.1109/LRA.2023.3248443 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2786972444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10050558</ieee_id><sourcerecordid>2786972444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</originalsourceid><addsrcrecordid>eNpNkM1rAjEQxUNpoWK999DDQs9r87FJNr2J9gu0lVLPIZudQEQ3NlkL_veN6MHTDDPvvRl-CN0TPCYEq6f592RMMWVjRqu6qtgVGlAmZcmkENcX_S0apbTGGBNOJVN8gD6XMcwWy-diUqw67zy0xRJi2oHt_R8UoStmh85svS1Ml1cxNKbxG5_6PFmEP9hC1-ex3_qjPt2hG2c2CUbnOkSr15ef6Xs5_3r7mE7mpaWK9qWDWqjKOiJ4XdG6VsRK4XDLTG2k5UQ0XAE0zBGijDOGGaegwYQIoUzbtGyIHk-5uxh-95B6vQ772OWTmsqcLWmVMQwRPqlsDClFcHqXPzXxoAnWR3A6g9NHcPoMLlseThYPABdyzDHnNfsHNNxo9g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786972444</pqid></control><display><type>article</type><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</creator><creatorcontrib>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</creatorcontrib><description>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2023.3248443</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Basis functions ; Computer architecture ; Correlation ; Correlation analysis ; Cost function ; Dynamical systems ; Imitation Learning ; Iterative methods ; Machine learning ; Mathematical models ; Movement ; Movement Primitives ; Numerical integration ; Planing ; Probabilistic Learning ; Probabilistic logic ; Robots ; Statistics ; Trajectories ; Trajectory ; Trajectory Covariance Learning</subject><ispartof>IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</citedby><cites>FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</cites><orcidid>0000-0001-7858-1835 ; 0000-0003-3484-1054 ; 0000-0002-8303-4999</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10050558$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10050558$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Jin, Zeqi</creatorcontrib><creatorcontrib>Volpp, Michael</creatorcontrib><creatorcontrib>Otto, Fabian</creatorcontrib><creatorcontrib>Lioutikov, Rudolf</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</description><subject>Artificial neural networks</subject><subject>Basis functions</subject><subject>Computer architecture</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cost function</subject><subject>Dynamical systems</subject><subject>Imitation Learning</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Movement</subject><subject>Movement Primitives</subject><subject>Numerical integration</subject><subject>Planing</subject><subject>Probabilistic Learning</subject><subject>Probabilistic logic</subject><subject>Robots</subject><subject>Statistics</subject><subject>Trajectories</subject><subject>Trajectory</subject><subject>Trajectory Covariance Learning</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1rAjEQxUNpoWK999DDQs9r87FJNr2J9gu0lVLPIZudQEQ3NlkL_veN6MHTDDPvvRl-CN0TPCYEq6f592RMMWVjRqu6qtgVGlAmZcmkENcX_S0apbTGGBNOJVN8gD6XMcwWy-diUqw67zy0xRJi2oHt_R8UoStmh85svS1Ml1cxNKbxG5_6PFmEP9hC1-ex3_qjPt2hG2c2CUbnOkSr15ef6Xs5_3r7mE7mpaWK9qWDWqjKOiJ4XdG6VsRK4XDLTG2k5UQ0XAE0zBGijDOGGaegwYQIoUzbtGyIHk-5uxh-95B6vQ772OWTmsqcLWmVMQwRPqlsDClFcHqXPzXxoAnWR3A6g9NHcPoMLlseThYPABdyzDHnNfsHNNxo9g</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Ge</creator><creator>Jin, Zeqi</creator><creator>Volpp, Michael</creator><creator>Otto, Fabian</creator><creator>Lioutikov, Rudolf</creator><creator>Neumann, Gerhard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7858-1835</orcidid><orcidid>https://orcid.org/0000-0003-3484-1054</orcidid><orcidid>https://orcid.org/0000-0002-8303-4999</orcidid></search><sort><creationdate>20230401</creationdate><title>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</title><author>Li, Ge ; Jin, Zeqi ; Volpp, Michael ; Otto, Fabian ; Lioutikov, Rudolf ; Neumann, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-fe8694cf1658428891c76f0d3a8a7c516b59eeb3f119afaa3af9eb011669adbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Basis functions</topic><topic>Computer architecture</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cost function</topic><topic>Dynamical systems</topic><topic>Imitation Learning</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Movement</topic><topic>Movement Primitives</topic><topic>Numerical integration</topic><topic>Planing</topic><topic>Probabilistic Learning</topic><topic>Probabilistic logic</topic><topic>Robots</topic><topic>Statistics</topic><topic>Trajectories</topic><topic>Trajectory</topic><topic>Trajectory Covariance Learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Jin, Zeqi</creatorcontrib><creatorcontrib>Volpp, Michael</creatorcontrib><creatorcontrib>Otto, Fabian</creatorcontrib><creatorcontrib>Lioutikov, Rudolf</creatorcontrib><creatorcontrib>Neumann, Gerhard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Ge</au><au>Jin, Zeqi</au><au>Volpp, Michael</au><au>Otto, Fabian</au><au>Lioutikov, Rudolf</au><au>Neumann, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>8</volume><issue>4</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Movement Primitives (MPs) are a well-known concept to represent and generate modular trajectories. MPs can be broadly categorized into two types: (a) dynamics-based approaches that generate smooth trajectories from any initial state, e. g., Dynamic Movement Primitives (DMPs), and (b) probabilistic approaches that capture higher-order statistics of the motion, e. g., Probabilistic Movement Primitives (ProMPs). To date, however, there is no MP method that unifies both, i. e. that can generate smooth trajectories from an arbitrary initial state while capturing higher-order statistics. In this paper, we introduce a unified perspective of both approaches by solving the ODE underlying the DMPs. We convert expensive online numerical integration of DMPs into position and velocity basis functions that can be used to represent trajectories or trajectory distributions similar to ProMPs while maintaining all the properties of dynamical systems. Since we inherit the properties of both methodologies, we call our proposed model Probabilistic Dynamic Movement Primitives (ProDMPs). Additionally, we embed ProDMPs in deep neural network architecture and propose a new cost function for efficient end-to-end learning of higher-order trajectory statistics. To this end, we leverage Bayesian Aggregation for non-linear iterative conditioning on sensory inputs. Our proposed model achieves smooth trajectory generation, goal-attractor convergence, correlation analysis, non-linear conditioning, and online re-planing in one framework. Our code can be found in https://github.com/ALRhub/ProDMP_RAL .</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2023.3248443</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7858-1835</orcidid><orcidid>https://orcid.org/0000-0003-3484-1054</orcidid><orcidid>https://orcid.org/0000-0002-8303-4999</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2023-04, Vol.8 (4), p.1-8 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_proquest_journals_2786972444 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Basis functions Computer architecture Correlation Correlation analysis Cost function Dynamical systems Imitation Learning Iterative methods Machine learning Mathematical models Movement Movement Primitives Numerical integration Planing Probabilistic Learning Probabilistic logic Robots Statistics Trajectories Trajectory Trajectory Covariance Learning |
title | ProDMP: A Unified Perspective on Dynamic and Probabilistic Movement Primitives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A46%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ProDMP:%20A%20Unified%20Perspective%20on%20Dynamic%20and%20Probabilistic%20Movement%20Primitives&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Li,%20Ge&rft.date=2023-04-01&rft.volume=8&rft.issue=4&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2023.3248443&rft_dat=%3Cproquest_RIE%3E2786972444%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786972444&rft_id=info:pmid/&rft_ieee_id=10050558&rfr_iscdi=true |