First passage times for Markov renewal processes and applications

This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2000-12, Vol.43 (12), p.1238-1249
Hauptverfasser: Xu, Guanghui, Yuan, Xueming, Li, Quanlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1249
container_issue 12
container_start_page 1238
container_title Science China. Mathematics
container_volume 43
creator Xu, Guanghui
Yuan, Xueming
Li, Quanlin
description This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.
doi_str_mv 10.1007/BF02880061
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_proquest_journals_2786947740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkx_ea200012002</wanfj_id><sourcerecordid>zgkx_ea200012002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov_oKAFxFWJ8lukj3WYlWoeNFzmM0mZW27uyZba_31Rir0Mm-Y-Zg3PEIuGdwyAHV3PweuNYBkJ2TEtOQZV1Kcpj7NspJrcU4mMTYVFEKUuVTliEznTYgD7TFGXDo6NBsXqe8CfcGw6r5ocK3b4Zr2obMuxrTEtqbY9-vG4tB0bbwgZx7X0U3-dUze5w9vs6ds8fr4PJsuMstLGDKRW8kEg0rmVSG1qIEzhKIUHHKpKyYLW2AuRM24Z5VXXLLaaw8erUCEWozJ9eHuDluP7dJ8dNvQJkfzs1x9G4ccAFgqPKFXBzR9_bl1cTiyXGlZ5krlkKibA2VDF2Nw3vSh2WDYGwbmL1BzDFT8AkdPZag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786947740</pqid></control><display><type>article</type><title>First passage times for Markov renewal processes and applications</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</creator><creatorcontrib>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</creatorcontrib><description>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</description><identifier>ISSN: 1006-9283</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1862-2763</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/BF02880061</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Convergence ; Queuing theory</subject><ispartof>Science China. Mathematics, 2000-12, Vol.43 (12), p.1238-1249</ispartof><rights>Science in China Press 2001.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</citedby><cites>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkx-ea/zgkx-ea.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Yuan, Xueming</creatorcontrib><creatorcontrib>Li, Quanlin</creatorcontrib><title>First passage times for Markov renewal processes and applications</title><title>Science China. Mathematics</title><description>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Queuing theory</subject><issn>1006-9283</issn><issn>1674-7283</issn><issn>1862-2763</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov_oKAFxFWJ8lukj3WYlWoeNFzmM0mZW27uyZba_31Rir0Mm-Y-Zg3PEIuGdwyAHV3PweuNYBkJ2TEtOQZV1Kcpj7NspJrcU4mMTYVFEKUuVTliEznTYgD7TFGXDo6NBsXqe8CfcGw6r5ocK3b4Zr2obMuxrTEtqbY9-vG4tB0bbwgZx7X0U3-dUze5w9vs6ds8fr4PJsuMstLGDKRW8kEg0rmVSG1qIEzhKIUHHKpKyYLW2AuRM24Z5VXXLLaaw8erUCEWozJ9eHuDluP7dJ8dNvQJkfzs1x9G4ccAFgqPKFXBzR9_bl1cTiyXGlZ5krlkKibA2VDF2Nw3vSh2WDYGwbmL1BzDFT8AkdPZag</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Xu, Guanghui</creator><creator>Yuan, Xueming</creator><creator>Li, Quanlin</creator><general>Springer Nature B.V</general><general>Asian-Pacific Operations Research Center, within CAS and APORS, Beijing 100080, China%National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20001201</creationdate><title>First passage times for Markov renewal processes and applications</title><author>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Yuan, Xueming</creatorcontrib><creatorcontrib>Li, Quanlin</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guanghui</au><au>Yuan, Xueming</au><au>Li, Quanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First passage times for Markov renewal processes and applications</atitle><jtitle>Science China. Mathematics</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>43</volume><issue>12</issue><spage>1238</spage><epage>1249</epage><pages>1238-1249</pages><issn>1006-9283</issn><issn>1674-7283</issn><eissn>1862-2763</eissn><eissn>1869-1862</eissn><abstract>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02880061</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-9283
ispartof Science China. Mathematics, 2000-12, Vol.43 (12), p.1238-1249
issn 1006-9283
1674-7283
1862-2763
1869-1862
language eng
recordid cdi_proquest_journals_2786947740
source SpringerLink Journals; Alma/SFX Local Collection
subjects Algorithms
Convergence
Queuing theory
title First passage times for Markov renewal processes and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20passage%20times%20for%20Markov%20renewal%20processes%20and%20applications&rft.jtitle=Science%20China.%20Mathematics&rft.au=Xu,%20Guanghui&rft.date=2000-12-01&rft.volume=43&rft.issue=12&rft.spage=1238&rft.epage=1249&rft.pages=1238-1249&rft.issn=1006-9283&rft.eissn=1862-2763&rft_id=info:doi/10.1007/BF02880061&rft_dat=%3Cwanfang_jour_proqu%3Ezgkx_ea200012002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786947740&rft_id=info:pmid/&rft_wanfj_id=zgkx_ea200012002&rfr_iscdi=true