First passage times for Markov renewal processes and applications
This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be eff...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2000-12, Vol.43 (12), p.1238-1249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1249 |
---|---|
container_issue | 12 |
container_start_page | 1238 |
container_title | Science China. Mathematics |
container_volume | 43 |
creator | Xu, Guanghui Yuan, Xueming Li, Quanlin |
description | This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm. |
doi_str_mv | 10.1007/BF02880061 |
format | Article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_proquest_journals_2786947740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkx_ea200012002</wanfj_id><sourcerecordid>zgkx_ea200012002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</originalsourceid><addsrcrecordid>eNpFkEFLAzEQhYMoWGov_oKAFxFWJ8lukj3WYlWoeNFzmM0mZW27uyZba_31Rir0Mm-Y-Zg3PEIuGdwyAHV3PweuNYBkJ2TEtOQZV1Kcpj7NspJrcU4mMTYVFEKUuVTliEznTYgD7TFGXDo6NBsXqe8CfcGw6r5ocK3b4Zr2obMuxrTEtqbY9-vG4tB0bbwgZx7X0U3-dUze5w9vs6ds8fr4PJsuMstLGDKRW8kEg0rmVSG1qIEzhKIUHHKpKyYLW2AuRM24Z5VXXLLaaw8erUCEWozJ9eHuDluP7dJ8dNvQJkfzs1x9G4ccAFgqPKFXBzR9_bl1cTiyXGlZ5krlkKibA2VDF2Nw3vSh2WDYGwbmL1BzDFT8AkdPZag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786947740</pqid></control><display><type>article</type><title>First passage times for Markov renewal processes and applications</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</creator><creatorcontrib>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</creatorcontrib><description>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</description><identifier>ISSN: 1006-9283</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1862-2763</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/BF02880061</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Convergence ; Queuing theory</subject><ispartof>Science China. Mathematics, 2000-12, Vol.43 (12), p.1238-1249</ispartof><rights>Science in China Press 2001.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</citedby><cites>FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkx-ea/zgkx-ea.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Yuan, Xueming</creatorcontrib><creatorcontrib>Li, Quanlin</creatorcontrib><title>First passage times for Markov renewal processes and applications</title><title>Science China. Mathematics</title><description>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Queuing theory</subject><issn>1006-9283</issn><issn>1674-7283</issn><issn>1862-2763</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLAzEQhYMoWGov_oKAFxFWJ8lukj3WYlWoeNFzmM0mZW27uyZba_31Rir0Mm-Y-Zg3PEIuGdwyAHV3PweuNYBkJ2TEtOQZV1Kcpj7NspJrcU4mMTYVFEKUuVTliEznTYgD7TFGXDo6NBsXqe8CfcGw6r5ocK3b4Zr2obMuxrTEtqbY9-vG4tB0bbwgZx7X0U3-dUze5w9vs6ds8fr4PJsuMstLGDKRW8kEg0rmVSG1qIEzhKIUHHKpKyYLW2AuRM24Z5VXXLLaaw8erUCEWozJ9eHuDluP7dJ8dNvQJkfzs1x9G4ccAFgqPKFXBzR9_bl1cTiyXGlZ5krlkKibA2VDF2Nw3vSh2WDYGwbmL1BzDFT8AkdPZag</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Xu, Guanghui</creator><creator>Yuan, Xueming</creator><creator>Li, Quanlin</creator><general>Springer Nature B.V</general><general>Asian-Pacific Operations Research Center, within CAS and APORS, Beijing 100080, China%National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100080, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20001201</creationdate><title>First passage times for Markov renewal processes and applications</title><author>Xu, Guanghui ; Yuan, Xueming ; Li, Quanlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-34c61310b64b5683d021a059320468b165c5a433d12f1bf7261df8f0fac3aa0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Queuing theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Guanghui</creatorcontrib><creatorcontrib>Yuan, Xueming</creatorcontrib><creatorcontrib>Li, Quanlin</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Guanghui</au><au>Yuan, Xueming</au><au>Li, Quanlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First passage times for Markov renewal processes and applications</atitle><jtitle>Science China. Mathematics</jtitle><date>2000-12-01</date><risdate>2000</risdate><volume>43</volume><issue>12</issue><spage>1238</spage><epage>1249</epage><pages>1238-1249</pages><issn>1006-9283</issn><issn>1674-7283</issn><eissn>1862-2763</eissn><eissn>1869-1862</eissn><abstract>This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02880061</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-9283 |
ispartof | Science China. Mathematics, 2000-12, Vol.43 (12), p.1238-1249 |
issn | 1006-9283 1674-7283 1862-2763 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2786947740 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Algorithms Convergence Queuing theory |
title | First passage times for Markov renewal processes and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First%20passage%20times%20for%20Markov%20renewal%20processes%20and%20applications&rft.jtitle=Science%20China.%20Mathematics&rft.au=Xu,%20Guanghui&rft.date=2000-12-01&rft.volume=43&rft.issue=12&rft.spage=1238&rft.epage=1249&rft.pages=1238-1249&rft.issn=1006-9283&rft.eissn=1862-2763&rft_id=info:doi/10.1007/BF02880061&rft_dat=%3Cwanfang_jour_proqu%3Ezgkx_ea200012002%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786947740&rft_id=info:pmid/&rft_wanfj_id=zgkx_ea200012002&rfr_iscdi=true |