Semirings which are unions of rings

Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2002-02, Vol.45 (2), p.172-195
Hauptverfasser: Pastijn, F., Guo, Yuqi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 195
container_issue 2
container_start_page 172
container_title Science China. Mathematics
container_volume 45
creator Pastijn, F.
Guo, Yuqi
description Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.
doi_str_mv 10.1360/02ys9020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786946191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786946191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqQV_QqAXL6szO9l8HKX4BQUPreewySZ2i92tiYv037taBecw8-A93vAeY5cI10gSbqA8ZAMlnLAJammKcZWn__A5m-W8hXHIgFA0YfNV2LWp7V4z_9y0fsPrFPjQtX2XeR_5D3PBzmL9lsPs907Zy_3devFYLJ8fnha3y8IjABaCCLGqwTgyUpB2NfgYfAOVNuCUVjKKRhqlvSRHLrqmUSiVKwPqUElNUzY_-u5T_z6E_GG3_ZC68aUt1RhBSDQ4qq6OKp_6nFOIdp_aXZ0OFsF-t2D_WqAvPw1MKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786946191</pqid></control><display><type>article</type><title>Semirings which are unions of rings</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Pastijn, F. ; Guo, Yuqi</creator><creatorcontrib>Pastijn, F. ; Guo, Yuqi</creatorcontrib><description>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</description><identifier>ISSN: 1869-1862</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1360/02ys9020</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Lattices ; Rings (mathematics)</subject><ispartof>Science China. Mathematics, 2002-02, Vol.45 (2), p.172-195</ispartof><rights>Science in China Press 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</citedby><cites>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pastijn, F.</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><title>Semirings which are unions of rings</title><title>Science China. Mathematics</title><description>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</description><subject>Lattices</subject><subject>Rings (mathematics)</subject><issn>1869-1862</issn><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEQDaJgqQV_QqAXL6szO9l8HKX4BQUPreewySZ2i92tiYv037taBecw8-A93vAeY5cI10gSbqA8ZAMlnLAJammKcZWn__A5m-W8hXHIgFA0YfNV2LWp7V4z_9y0fsPrFPjQtX2XeR_5D3PBzmL9lsPs907Zy_3devFYLJ8fnha3y8IjABaCCLGqwTgyUpB2NfgYfAOVNuCUVjKKRhqlvSRHLrqmUSiVKwPqUElNUzY_-u5T_z6E_GG3_ZC68aUt1RhBSDQ4qq6OKp_6nFOIdp_aXZ0OFsF-t2D_WqAvPw1MKg</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>Pastijn, F.</creator><creator>Guo, Yuqi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200202</creationdate><title>Semirings which are unions of rings</title><author>Pastijn, F. ; Guo, Yuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Lattices</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastijn, F.</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastijn, F.</au><au>Guo, Yuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semirings which are unions of rings</atitle><jtitle>Science China. Mathematics</jtitle><date>2002-02</date><risdate>2002</risdate><volume>45</volume><issue>2</issue><spage>172</spage><epage>195</epage><pages>172-195</pages><issn>1869-1862</issn><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1360/02ys9020</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1869-1862
ispartof Science China. Mathematics, 2002-02, Vol.45 (2), p.172-195
issn 1869-1862
1674-7283
1869-1862
language eng
recordid cdi_proquest_journals_2786946191
source Springer Nature - Complete Springer Journals; Alma/SFX Local Collection
subjects Lattices
Rings (mathematics)
title Semirings which are unions of rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semirings%20which%20are%20unions%20of%20rings&rft.jtitle=Science%20China.%20Mathematics&rft.au=Pastijn,%20F.&rft.date=2002-02&rft.volume=45&rft.issue=2&rft.spage=172&rft.epage=195&rft.pages=172-195&rft.issn=1869-1862&rft.eissn=1869-1862&rft_id=info:doi/10.1360/02ys9020&rft_dat=%3Cproquest_cross%3E2786946191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786946191&rft_id=info:pmid/&rfr_iscdi=true