Semirings which are unions of rings
Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattic...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2002-02, Vol.45 (2), p.172-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 195 |
---|---|
container_issue | 2 |
container_start_page | 172 |
container_title | Science China. Mathematics |
container_volume | 45 |
creator | Pastijn, F. Guo, Yuqi |
description | Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S. |
doi_str_mv | 10.1360/02ys9020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786946191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786946191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</originalsourceid><addsrcrecordid>eNpNUE1LAzEQDaJgqQV_QqAXL6szO9l8HKX4BQUPreewySZ2i92tiYv037taBecw8-A93vAeY5cI10gSbqA8ZAMlnLAJammKcZWn__A5m-W8hXHIgFA0YfNV2LWp7V4z_9y0fsPrFPjQtX2XeR_5D3PBzmL9lsPs907Zy_3devFYLJ8fnha3y8IjABaCCLGqwTgyUpB2NfgYfAOVNuCUVjKKRhqlvSRHLrqmUSiVKwPqUElNUzY_-u5T_z6E_GG3_ZC68aUt1RhBSDQ4qq6OKp_6nFOIdp_aXZ0OFsF-t2D_WqAvPw1MKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786946191</pqid></control><display><type>article</type><title>Semirings which are unions of rings</title><source>Springer Nature - Complete Springer Journals</source><source>Alma/SFX Local Collection</source><creator>Pastijn, F. ; Guo, Yuqi</creator><creatorcontrib>Pastijn, F. ; Guo, Yuqi</creatorcontrib><description>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</description><identifier>ISSN: 1869-1862</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1360/02ys9020</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Lattices ; Rings (mathematics)</subject><ispartof>Science China. Mathematics, 2002-02, Vol.45 (2), p.172-195</ispartof><rights>Science in China Press 2002.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</citedby><cites>FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Pastijn, F.</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><title>Semirings which are unions of rings</title><title>Science China. Mathematics</title><description>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</description><subject>Lattices</subject><subject>Rings (mathematics)</subject><issn>1869-1862</issn><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNpNUE1LAzEQDaJgqQV_QqAXL6szO9l8HKX4BQUPreewySZ2i92tiYv037taBecw8-A93vAeY5cI10gSbqA8ZAMlnLAJammKcZWn__A5m-W8hXHIgFA0YfNV2LWp7V4z_9y0fsPrFPjQtX2XeR_5D3PBzmL9lsPs907Zy_3devFYLJ8fnha3y8IjABaCCLGqwTgyUpB2NfgYfAOVNuCUVjKKRhqlvSRHLrqmUSiVKwPqUElNUzY_-u5T_z6E_GG3_ZC68aUt1RhBSDQ4qq6OKp_6nFOIdp_aXZ0OFsF-t2D_WqAvPw1MKg</recordid><startdate>200202</startdate><enddate>200202</enddate><creator>Pastijn, F.</creator><creator>Guo, Yuqi</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200202</creationdate><title>Semirings which are unions of rings</title><author>Pastijn, F. ; Guo, Yuqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1001-433115a09b396438ba0cfecd05890b7876f4d6978c63b3bfbdd7167b2e18e5683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Lattices</topic><topic>Rings (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastijn, F.</creatorcontrib><creatorcontrib>Guo, Yuqi</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pastijn, F.</au><au>Guo, Yuqi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semirings which are unions of rings</atitle><jtitle>Science China. Mathematics</jtitle><date>2002-02</date><risdate>2002</risdate><volume>45</volume><issue>2</issue><spage>172</spage><epage>195</epage><pages>172-195</pages><issn>1869-1862</issn><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>Semirings which are a disjoint union of rings form a variety S which contains the variety of all rings and the variety of all idempotent semirings, and in particular, the variety of distributive lattices. Various structure theorems are established which bring insight into the structure of the lattice of subvarieties of S.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1360/02ys9020</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1869-1862 |
ispartof | Science China. Mathematics, 2002-02, Vol.45 (2), p.172-195 |
issn | 1869-1862 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2786946191 |
source | Springer Nature - Complete Springer Journals; Alma/SFX Local Collection |
subjects | Lattices Rings (mathematics) |
title | Semirings which are unions of rings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semirings%20which%20are%20unions%20of%20rings&rft.jtitle=Science%20China.%20Mathematics&rft.au=Pastijn,%20F.&rft.date=2002-02&rft.volume=45&rft.issue=2&rft.spage=172&rft.epage=195&rft.pages=172-195&rft.issn=1869-1862&rft.eissn=1869-1862&rft_id=info:doi/10.1360/02ys9020&rft_dat=%3Cproquest_cross%3E2786946191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786946191&rft_id=info:pmid/&rfr_iscdi=true |