Reversible algorithm of simulating multivariate densities with multi-hump

To simulate a multivariate density with multi-hump, Markov chain Monte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2001-03, Vol.44 (3), p.357-364
Hauptverfasser: Gong, Guanglu, Qian, Minping, Xie, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 364
container_issue 3
container_start_page 357
container_title Science China. Mathematics
container_volume 44
creator Gong, Guanglu
Qian, Minping
Xie, Jun
description To simulate a multivariate density with multi-hump, Markov chain Monte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.
doi_str_mv 10.1007/BF02878717
format Article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_proquest_journals_2786941884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkx_ea200103012</wanfj_id><sourcerecordid>zgkx_ea200103012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-3d9259c4fb5779829f2054227352353cff3e4810ccbf000dbf10d45b8a7deeb33</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgCi66F39BwYsI1clHm-Soi6sLC4LouaRt0o32Y03SXfXXG6mwp3mZeZiBQegCww0G4Lf3SyCCC475EZphkZOU8JwexwyQp5IIeorm3tsSMkoly7mcodWL3mkXe61OVNsMzoZNlwwm8bYbWxVs3yQxBLtTzqqgk1r33garfbKPdJqlm7HbnqMTo1qv5__1DL0tH14XT-n6-XG1uFunFZEQUlpLksmKmTLjXAoiDYGMEcJpRmhGK2OoZgJDVZUGAOrSYKhZVgrFa61LSs_Q1bR3r3qj-qZ4H0bXx4vFT_PxVWhFADBQwCTSy4lu3fA5ah8OlnCRS4aFYFFdT6pyg_dOm2LrbKfcd4Gh-HtscXgs_QVobGoQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786941884</pqid></control><display><type>article</type><title>Reversible algorithm of simulating multivariate densities with multi-hump</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gong, Guanglu ; Qian, Minping ; Xie, Jun</creator><creatorcontrib>Gong, Guanglu ; Qian, Minping ; Xie, Jun</creatorcontrib><description>To simulate a multivariate density with multi-hump, Markov chain Monte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.</description><identifier>ISSN: 1006-9283</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1862-2763</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/BF02878717</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Algorithms ; Computer simulation ; Density ; Markov chains ; Monte Carlo simulation ; Multivariate analysis</subject><ispartof>Science China. Mathematics, 2001-03, Vol.44 (3), p.357-364</ispartof><rights>Science in China Press 2001.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-3d9259c4fb5779829f2054227352353cff3e4810ccbf000dbf10d45b8a7deeb33</citedby><cites>FETCH-LOGICAL-c290t-3d9259c4fb5779829f2054227352353cff3e4810ccbf000dbf10d45b8a7deeb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkx-ea/zgkx-ea.jpg</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gong, Guanglu</creatorcontrib><creatorcontrib>Qian, Minping</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><title>Reversible algorithm of simulating multivariate densities with multi-hump</title><title>Science China. Mathematics</title><description>To simulate a multivariate density with multi-hump, Markov chain Monte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Density</subject><subject>Markov chains</subject><subject>Monte Carlo simulation</subject><subject>Multivariate analysis</subject><issn>1006-9283</issn><issn>1674-7283</issn><issn>1862-2763</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgCi66F39BwYsI1clHm-Soi6sLC4LouaRt0o32Y03SXfXXG6mwp3mZeZiBQegCww0G4Lf3SyCCC475EZphkZOU8JwexwyQp5IIeorm3tsSMkoly7mcodWL3mkXe61OVNsMzoZNlwwm8bYbWxVs3yQxBLtTzqqgk1r33garfbKPdJqlm7HbnqMTo1qv5__1DL0tH14XT-n6-XG1uFunFZEQUlpLksmKmTLjXAoiDYGMEcJpRmhGK2OoZgJDVZUGAOrSYKhZVgrFa61LSs_Q1bR3r3qj-qZ4H0bXx4vFT_PxVWhFADBQwCTSy4lu3fA5ah8OlnCRS4aFYFFdT6pyg_dOm2LrbKfcd4Gh-HtscXgs_QVobGoQ</recordid><startdate>20010301</startdate><enddate>20010301</enddate><creator>Gong, Guanglu</creator><creator>Qian, Minping</creator><creator>Xie, Jun</creator><general>Springer Nature B.V</general><general>Department of Mathematical Science, Tsinghua University, Beijing 100084, China%Department of Probability &amp; Statistics, Peking University, Beijing 100871, China) XIE Jun(Department of Statistics, UCLA, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20010301</creationdate><title>Reversible algorithm of simulating multivariate densities with multi-hump</title><author>Gong, Guanglu ; Qian, Minping ; Xie, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-3d9259c4fb5779829f2054227352353cff3e4810ccbf000dbf10d45b8a7deeb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Density</topic><topic>Markov chains</topic><topic>Monte Carlo simulation</topic><topic>Multivariate analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Guanglu</creatorcontrib><creatorcontrib>Qian, Minping</creatorcontrib><creatorcontrib>Xie, Jun</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Guanglu</au><au>Qian, Minping</au><au>Xie, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reversible algorithm of simulating multivariate densities with multi-hump</atitle><jtitle>Science China. Mathematics</jtitle><date>2001-03-01</date><risdate>2001</risdate><volume>44</volume><issue>3</issue><spage>357</spage><epage>364</epage><pages>357-364</pages><issn>1006-9283</issn><issn>1674-7283</issn><eissn>1862-2763</eissn><eissn>1869-1862</eissn><abstract>To simulate a multivariate density with multi-hump, Markov chain Monte Carlo method encounters the obstacle of escaping from one hump to another, since it usually takes extraordinately long time and then becomes practically impossible to perform. To overcome these difficulties, a reversible scheme to generate a Markov chain, in terms of which the simulated density may be successful in rather general cases of practically avoiding being trapped in local humps, was suggested.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02878717</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-9283
ispartof Science China. Mathematics, 2001-03, Vol.44 (3), p.357-364
issn 1006-9283
1674-7283
1862-2763
1869-1862
language eng
recordid cdi_proquest_journals_2786941884
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Algorithms
Computer simulation
Density
Markov chains
Monte Carlo simulation
Multivariate analysis
title Reversible algorithm of simulating multivariate densities with multi-hump
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A50%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reversible%20algorithm%20of%20simulating%20multivariate%20densities%20with%20multi-hump&rft.jtitle=Science%20China.%20Mathematics&rft.au=Gong,%20Guanglu&rft.date=2001-03-01&rft.volume=44&rft.issue=3&rft.spage=357&rft.epage=364&rft.pages=357-364&rft.issn=1006-9283&rft.eissn=1862-2763&rft_id=info:doi/10.1007/BF02878717&rft_dat=%3Cwanfang_jour_proqu%3Ezgkx_ea200103012%3C/wanfang_jour_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786941884&rft_id=info:pmid/&rft_wanfj_id=zgkx_ea200103012&rfr_iscdi=true