Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems

We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical methods for partial differential equations 2023-05, Vol.39 (3), p.2400-2443
Hauptverfasser: Abreu, Eduardo, Espírito Santo, Arthur, Lambert, Wanderson, Pérez, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2443
container_issue 3
container_start_page 2400
container_title Numerical methods for partial differential equations
container_volume 39
creator Abreu, Eduardo
Espírito Santo, Arthur
Lambert, Wanderson
Pérez, John
description We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.
doi_str_mv 10.1002/num.22972
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786936505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786936505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</originalsourceid><addsrcrecordid>eNp1kU9u1DAUxi0EEkPLghs8iRUSaW3HcZIlGlqKmMKGSuwix3mecevYg51MFVa9A5fgXJwE02HL6i3e7_sjfYS8YvSMUcrP_Tyecd7W_AlZMdo2BRdcPiUrWou2YFX77Tl5kdItpYxVrF2RX-vgDxi36DW-hT7MfsABDipaNdngYR_DHuNkMYHyA3yK84_dXThACm5-BIIBBWZ2boHBJh1xQtiobVR-a5X__fDzYnaY3TwkvcMR4WAV3KO6A5WWcT-FyepsrdySbAITIrD3sFtyaB9cfuUCvcMxnZJnRrmEL__dE3JzefF1fVVsvnz4uH63KTSval5og6bBSoqyQiGwbGStdD9o3VDMQNkKYQxrUAo1KCx7afigpahFja3UoixPyOujbw7-PmOautswx9wvdbxuZFvKilaZenOkdAwpRTTdPtpRxaVjtPs7RJeH6B6HyOz5kb23Dpf_g93nm-uj4g-qYZA3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786936505</pqid></control><display><type>article</type><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><source>Wiley Journals</source><creator>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</creator><creatorcontrib>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</creatorcontrib><description>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22972</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Asymptotic properties ; Boundary value problems ; Convergence ; Eigenvalues ; Entropy of solution ; fully discrete Lagrangian–Eulerian scheme ; Kruzhkov entropy condition ; Maximum principle ; no‐flow curves ; positivity‐preserving ; Rarefaction ; Shock capturing ; Shock waves ; total variation nonincreasing ; weak asymptotic analysis ; weak bounded variation</subject><ispartof>Numerical methods for partial differential equations, 2023-05, Vol.39 (3), p.2400-2443</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</cites><orcidid>0000-0002-2240-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abreu, Eduardo</creatorcontrib><creatorcontrib>Espírito Santo, Arthur</creatorcontrib><creatorcontrib>Lambert, Wanderson</creatorcontrib><creatorcontrib>Pérez, John</creatorcontrib><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><title>Numerical methods for partial differential equations</title><description>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</description><subject>Asymptotic properties</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Entropy of solution</subject><subject>fully discrete Lagrangian–Eulerian scheme</subject><subject>Kruzhkov entropy condition</subject><subject>Maximum principle</subject><subject>no‐flow curves</subject><subject>positivity‐preserving</subject><subject>Rarefaction</subject><subject>Shock capturing</subject><subject>Shock waves</subject><subject>total variation nonincreasing</subject><subject>weak asymptotic analysis</subject><subject>weak bounded variation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1DAUxi0EEkPLghs8iRUSaW3HcZIlGlqKmMKGSuwix3mecevYg51MFVa9A5fgXJwE02HL6i3e7_sjfYS8YvSMUcrP_Tyecd7W_AlZMdo2BRdcPiUrWou2YFX77Tl5kdItpYxVrF2RX-vgDxi36DW-hT7MfsABDipaNdngYR_DHuNkMYHyA3yK84_dXThACm5-BIIBBWZ2boHBJh1xQtiobVR-a5X__fDzYnaY3TwkvcMR4WAV3KO6A5WWcT-FyepsrdySbAITIrD3sFtyaB9cfuUCvcMxnZJnRrmEL__dE3JzefF1fVVsvnz4uH63KTSval5og6bBSoqyQiGwbGStdD9o3VDMQNkKYQxrUAo1KCx7afigpahFja3UoixPyOujbw7-PmOautswx9wvdbxuZFvKilaZenOkdAwpRTTdPtpRxaVjtPs7RJeH6B6HyOz5kb23Dpf_g93nm-uj4g-qYZA3</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Abreu, Eduardo</creator><creator>Espírito Santo, Arthur</creator><creator>Lambert, Wanderson</creator><creator>Pérez, John</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2240-5506</orcidid></search><sort><creationdate>202305</creationdate><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><author>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Entropy of solution</topic><topic>fully discrete Lagrangian–Eulerian scheme</topic><topic>Kruzhkov entropy condition</topic><topic>Maximum principle</topic><topic>no‐flow curves</topic><topic>positivity‐preserving</topic><topic>Rarefaction</topic><topic>Shock capturing</topic><topic>Shock waves</topic><topic>total variation nonincreasing</topic><topic>weak asymptotic analysis</topic><topic>weak bounded variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abreu, Eduardo</creatorcontrib><creatorcontrib>Espírito Santo, Arthur</creatorcontrib><creatorcontrib>Lambert, Wanderson</creatorcontrib><creatorcontrib>Pérez, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abreu, Eduardo</au><au>Espírito Santo, Arthur</au><au>Lambert, Wanderson</au><au>Pérez, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-05</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>2400</spage><epage>2443</epage><pages>2400-2443</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/num.22972</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-2240-5506</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0749-159X
ispartof Numerical methods for partial differential equations, 2023-05, Vol.39 (3), p.2400-2443
issn 0749-159X
1098-2426
language eng
recordid cdi_proquest_journals_2786936505
source Wiley Journals
subjects Asymptotic properties
Boundary value problems
Convergence
Eigenvalues
Entropy of solution
fully discrete Lagrangian–Eulerian scheme
Kruzhkov entropy condition
Maximum principle
no‐flow curves
positivity‐preserving
Rarefaction
Shock capturing
Shock waves
total variation nonincreasing
weak asymptotic analysis
weak bounded variation
title Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence,%20bounded%20variation%20properties%20and%20Kruzhkov%20solution%20of%20a%20fully%20discrete%20Lagrangian%E2%80%93Eulerian%20scheme%20via%20weak%20asymptotic%20analysis%20for%201D%20hyperbolic%20problems&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Abreu,%20Eduardo&rft.date=2023-05&rft.volume=39&rft.issue=3&rft.spage=2400&rft.epage=2443&rft.pages=2400-2443&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22972&rft_dat=%3Cproquest_cross%3E2786936505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786936505&rft_id=info:pmid/&rfr_iscdi=true