Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems
We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximati...
Gespeichert in:
Veröffentlicht in: | Numerical methods for partial differential equations 2023-05, Vol.39 (3), p.2400-2443 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2443 |
---|---|
container_issue | 3 |
container_start_page | 2400 |
container_title | Numerical methods for partial differential equations |
container_volume | 39 |
creator | Abreu, Eduardo Espírito Santo, Arthur Lambert, Wanderson Pérez, John |
description | We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions. |
doi_str_mv | 10.1002/num.22972 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786936505</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786936505</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</originalsourceid><addsrcrecordid>eNp1kU9u1DAUxi0EEkPLghs8iRUSaW3HcZIlGlqKmMKGSuwix3mecevYg51MFVa9A5fgXJwE02HL6i3e7_sjfYS8YvSMUcrP_Tyecd7W_AlZMdo2BRdcPiUrWou2YFX77Tl5kdItpYxVrF2RX-vgDxi36DW-hT7MfsABDipaNdngYR_DHuNkMYHyA3yK84_dXThACm5-BIIBBWZ2boHBJh1xQtiobVR-a5X__fDzYnaY3TwkvcMR4WAV3KO6A5WWcT-FyepsrdySbAITIrD3sFtyaB9cfuUCvcMxnZJnRrmEL__dE3JzefF1fVVsvnz4uH63KTSval5og6bBSoqyQiGwbGStdD9o3VDMQNkKYQxrUAo1KCx7afigpahFja3UoixPyOujbw7-PmOautswx9wvdbxuZFvKilaZenOkdAwpRTTdPtpRxaVjtPs7RJeH6B6HyOz5kb23Dpf_g93nm-uj4g-qYZA3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786936505</pqid></control><display><type>article</type><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><source>Wiley Journals</source><creator>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</creator><creatorcontrib>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</creatorcontrib><description>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</description><identifier>ISSN: 0749-159X</identifier><identifier>EISSN: 1098-2426</identifier><identifier>DOI: 10.1002/num.22972</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Asymptotic properties ; Boundary value problems ; Convergence ; Eigenvalues ; Entropy of solution ; fully discrete Lagrangian–Eulerian scheme ; Kruzhkov entropy condition ; Maximum principle ; no‐flow curves ; positivity‐preserving ; Rarefaction ; Shock capturing ; Shock waves ; total variation nonincreasing ; weak asymptotic analysis ; weak bounded variation</subject><ispartof>Numerical methods for partial differential equations, 2023-05, Vol.39 (3), p.2400-2443</ispartof><rights>2022 Wiley Periodicals LLC.</rights><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</cites><orcidid>0000-0002-2240-5506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnum.22972$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnum.22972$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Abreu, Eduardo</creatorcontrib><creatorcontrib>Espírito Santo, Arthur</creatorcontrib><creatorcontrib>Lambert, Wanderson</creatorcontrib><creatorcontrib>Pérez, John</creatorcontrib><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><title>Numerical methods for partial differential equations</title><description>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</description><subject>Asymptotic properties</subject><subject>Boundary value problems</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Entropy of solution</subject><subject>fully discrete Lagrangian–Eulerian scheme</subject><subject>Kruzhkov entropy condition</subject><subject>Maximum principle</subject><subject>no‐flow curves</subject><subject>positivity‐preserving</subject><subject>Rarefaction</subject><subject>Shock capturing</subject><subject>Shock waves</subject><subject>total variation nonincreasing</subject><subject>weak asymptotic analysis</subject><subject>weak bounded variation</subject><issn>0749-159X</issn><issn>1098-2426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kU9u1DAUxi0EEkPLghs8iRUSaW3HcZIlGlqKmMKGSuwix3mecevYg51MFVa9A5fgXJwE02HL6i3e7_sjfYS8YvSMUcrP_Tyecd7W_AlZMdo2BRdcPiUrWou2YFX77Tl5kdItpYxVrF2RX-vgDxi36DW-hT7MfsABDipaNdngYR_DHuNkMYHyA3yK84_dXThACm5-BIIBBWZ2boHBJh1xQtiobVR-a5X__fDzYnaY3TwkvcMR4WAV3KO6A5WWcT-FyepsrdySbAITIrD3sFtyaB9cfuUCvcMxnZJnRrmEL__dE3JzefF1fVVsvnz4uH63KTSval5og6bBSoqyQiGwbGStdD9o3VDMQNkKYQxrUAo1KCx7afigpahFja3UoixPyOujbw7-PmOautswx9wvdbxuZFvKilaZenOkdAwpRTTdPtpRxaVjtPs7RJeH6B6HyOz5kb23Dpf_g93nm-uj4g-qYZA3</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Abreu, Eduardo</creator><creator>Espírito Santo, Arthur</creator><creator>Lambert, Wanderson</creator><creator>Pérez, John</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2240-5506</orcidid></search><sort><creationdate>202305</creationdate><title>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</title><author>Abreu, Eduardo ; Espírito Santo, Arthur ; Lambert, Wanderson ; Pérez, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2572-cfef8e56435e44e3867acbdcc80e2573944ff18e64adae3b6f2dc64747e96c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>Boundary value problems</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Entropy of solution</topic><topic>fully discrete Lagrangian–Eulerian scheme</topic><topic>Kruzhkov entropy condition</topic><topic>Maximum principle</topic><topic>no‐flow curves</topic><topic>positivity‐preserving</topic><topic>Rarefaction</topic><topic>Shock capturing</topic><topic>Shock waves</topic><topic>total variation nonincreasing</topic><topic>weak asymptotic analysis</topic><topic>weak bounded variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abreu, Eduardo</creatorcontrib><creatorcontrib>Espírito Santo, Arthur</creatorcontrib><creatorcontrib>Lambert, Wanderson</creatorcontrib><creatorcontrib>Pérez, John</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical methods for partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abreu, Eduardo</au><au>Espírito Santo, Arthur</au><au>Lambert, Wanderson</au><au>Pérez, John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems</atitle><jtitle>Numerical methods for partial differential equations</jtitle><date>2023-05</date><risdate>2023</risdate><volume>39</volume><issue>3</issue><spage>2400</spage><epage>2443</epage><pages>2400-2443</pages><issn>0749-159X</issn><eissn>1098-2426</eissn><abstract>We design and implement an effective fully discrete Lagrangian–Eulerian scheme for a class of scalar, local and nonlocal models, and systems of hyperbolic problems in 1D. We propose statements, via a weak asymptotic analysis, which include existence, uniqueness, regularity, and numerical approximations of entropy‐weak solutions computed with the scheme for the corresponding nonlinear initial value problem for the local scalar case. We study both convergence and weak bounded variation (BV) properties of the scheme to the entropy solution (for the local and scalar case) in the sense of Kruzhkov. The approach is based on the improved concept of no‐flow curves, as introduced by the authors, and we highlight the strengths of the method: (i) the scheme for systems of hyperbolic problems does not require computation of the eigenvalues (exact or approximate) either to the numerical flux function or the weak CFL stability condition (wCFL) and (ii) we prove the properties: positivity‐preserving, total variation nonincreasing, and maximum principle subject to the wCFL. We present numerical experiments to evaluate the shock capturing capabilities of the scheme in resolving the main features for hyperbolic problems: shock waves, rarefaction waves, contact discontinuities, positivity‐preserving properties, and nonlinear wave formations and interactions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/num.22972</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-2240-5506</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-159X |
ispartof | Numerical methods for partial differential equations, 2023-05, Vol.39 (3), p.2400-2443 |
issn | 0749-159X 1098-2426 |
language | eng |
recordid | cdi_proquest_journals_2786936505 |
source | Wiley Journals |
subjects | Asymptotic properties Boundary value problems Convergence Eigenvalues Entropy of solution fully discrete Lagrangian–Eulerian scheme Kruzhkov entropy condition Maximum principle no‐flow curves positivity‐preserving Rarefaction Shock capturing Shock waves total variation nonincreasing weak asymptotic analysis weak bounded variation |
title | Convergence, bounded variation properties and Kruzhkov solution of a fully discrete Lagrangian–Eulerian scheme via weak asymptotic analysis for 1D hyperbolic problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A34%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence,%20bounded%20variation%20properties%20and%20Kruzhkov%20solution%20of%20a%20fully%20discrete%20Lagrangian%E2%80%93Eulerian%20scheme%20via%20weak%20asymptotic%20analysis%20for%201D%20hyperbolic%20problems&rft.jtitle=Numerical%20methods%20for%20partial%20differential%20equations&rft.au=Abreu,%20Eduardo&rft.date=2023-05&rft.volume=39&rft.issue=3&rft.spage=2400&rft.epage=2443&rft.pages=2400-2443&rft.issn=0749-159X&rft.eissn=1098-2426&rft_id=info:doi/10.1002/num.22972&rft_dat=%3Cproquest_cross%3E2786936505%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786936505&rft_id=info:pmid/&rfr_iscdi=true |