On the structure of hyperbolic manifolds
Forn≥2, we quantify the Margulis constant ε(n) giving rise to a thick and thin decomposition of hyperbolicn-manifolds of finite volume. As a consequence, we obtain new universal lower bounds for the volume and Gromov's invariant as well as a geometrical inequality between injectivity radius and...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2004-01, Vol.143 (1), p.361-379 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Forn≥2, we quantify the Margulis constant ε(n) giving rise to a thick and thin decomposition of hyperbolicn-manifolds of finite volume. As a consequence, we obtain new universal lower bounds for the volume and Gromov's invariant as well as a geometrical inequality between injectivity radius and diameter for compact manifolds. Finally, we concretise the upper bound for the counting function of hyperbolic manifolds of dimension >4 as described by Burger, Gelander, Lubotzky and Mozes. |
---|---|
ISSN: | 0021-2172 1565-8511 |
DOI: | 10.1007/BF02803507 |