On the structure of hyperbolic manifolds

Forn≥2, we quantify the Margulis constant ε(n) giving rise to a thick and thin decomposition of hyperbolicn-manifolds of finite volume. As a consequence, we obtain new universal lower bounds for the volume and Gromov's invariant as well as a geometrical inequality between injectivity radius and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2004-01, Vol.143 (1), p.361-379
1. Verfasser: Kellerhals, Ruth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forn≥2, we quantify the Margulis constant ε(n) giving rise to a thick and thin decomposition of hyperbolicn-manifolds of finite volume. As a consequence, we obtain new universal lower bounds for the volume and Gromov's invariant as well as a geometrical inequality between injectivity radius and diameter for compact manifolds. Finally, we concretise the upper bound for the counting function of hyperbolic manifolds of dimension >4 as described by Burger, Gelander, Lubotzky and Mozes.
ISSN:0021-2172
1565-8511
DOI:10.1007/BF02803507