SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY
A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of th...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2009-06, Vol.79 (3), p.499-506 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 506 |
---|---|
container_issue | 3 |
container_start_page | 499 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 79 |
creator | BALLESTER-BOLINCHES, A. EZQUERRO, LUIS M. SKIBA, ALEXANDER N. |
description | A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group. |
doi_str_mv | 10.1017/S0004972709000100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786933012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972709000100</cupid><sourcerecordid>2786933012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</originalsourceid><addsrcrecordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH9ZJjCNmkkpQkLXCynNRBLZQUp5Xg73HVCg6I09tm3owGgEuMrjHC_KZECI087nLk2Q4jdAQGmFPqYEbIMRjszs7ufgrO-n5pJ0pdMQB-Ob2Ni3w6KWEewSjN0iqEh8VjWiXQh2VV5FkMg3wWFo4_y9M7PwtCOCnySVhUz-fgpFVvvb441CGYRmEVJM44j9PAHzsN8cTGaRkZKSVqK0uR4rhtWoFchqwlzZVt6XyklVt7wm20IoIwylhb02auqOKckSG42v9dm-5jq_uNXHZb824lpcsF8whB2LUovEc1put7o1u5NouVMl8SI7lLSv5JynKcPWfRb_TnD0GZV8k44VSy-EHeZ088SXAkI4snBw21qs1i_qJ_rfyv8g1s83Hq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786933012</pqid></control><display><type>article</type><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals - CAUL Collection</source><creator>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</creator><creatorcontrib>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</creatorcontrib><description>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972709000100</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>20D15 ; 20D20 ; Avoidance ; cover-avoidance property ; finite group ; Group theory ; Impact analysis ; primary 20D10 ; saturated formation ; Subgroups</subject><ispartof>Bulletin of the Australian Mathematical Society, 2009-06, Vol.79 (3), p.499-506</ispartof><rights>Copyright © Australian Mathematical Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</citedby><cites>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972709000100/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>EZQUERRO, LUIS M.</creatorcontrib><creatorcontrib>SKIBA, ALEXANDER N.</creatorcontrib><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</description><subject>20D15</subject><subject>20D20</subject><subject>Avoidance</subject><subject>cover-avoidance property</subject><subject>finite group</subject><subject>Group theory</subject><subject>Impact analysis</subject><subject>primary 20D10</subject><subject>saturated formation</subject><subject>Subgroups</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH9ZJjCNmkkpQkLXCynNRBLZQUp5Xg73HVCg6I09tm3owGgEuMrjHC_KZECI087nLk2Q4jdAQGmFPqYEbIMRjszs7ufgrO-n5pJ0pdMQB-Ob2Ni3w6KWEewSjN0iqEh8VjWiXQh2VV5FkMg3wWFo4_y9M7PwtCOCnySVhUz-fgpFVvvb441CGYRmEVJM44j9PAHzsN8cTGaRkZKSVqK0uR4rhtWoFchqwlzZVt6XyklVt7wm20IoIwylhb02auqOKckSG42v9dm-5jq_uNXHZb824lpcsF8whB2LUovEc1put7o1u5NouVMl8SI7lLSv5JynKcPWfRb_TnD0GZV8k44VSy-EHeZ088SXAkI4snBw21qs1i_qJ_rfyv8g1s83Hq</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>BALLESTER-BOLINCHES, A.</creator><creator>EZQUERRO, LUIS M.</creator><creator>SKIBA, ALEXANDER N.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><author>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>20D15</topic><topic>20D20</topic><topic>Avoidance</topic><topic>cover-avoidance property</topic><topic>finite group</topic><topic>Group theory</topic><topic>Impact analysis</topic><topic>primary 20D10</topic><topic>saturated formation</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>EZQUERRO, LUIS M.</creatorcontrib><creatorcontrib>SKIBA, ALEXANDER N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALLESTER-BOLINCHES, A.</au><au>EZQUERRO, LUIS M.</au><au>SKIBA, ALEXANDER N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>79</volume><issue>3</issue><spage>499</spage><epage>506</epage><pages>499-506</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972709000100</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 2009-06, Vol.79 (3), p.499-506 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_proquest_journals_2786933012 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals - CAUL Collection |
subjects | 20D15 20D20 Avoidance cover-avoidance property finite group Group theory Impact analysis primary 20D10 saturated formation Subgroups |
title | SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUBGROUPS%20OF%20FINITE%20GROUPS%20WITH%20A%20STRONG%20COVER-AVOIDANCE%20PROPERTY&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=BALLESTER-BOLINCHES,%20A.&rft.date=2009-06-01&rft.volume=79&rft.issue=3&rft.spage=499&rft.epage=506&rft.pages=499-506&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972709000100&rft_dat=%3Cproquest_cross%3E2786933012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786933012&rft_id=info:pmid/&rft_cupid=10_1017_S0004972709000100&rfr_iscdi=true |