SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY

A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2009-06, Vol.79 (3), p.499-506
Hauptverfasser: BALLESTER-BOLINCHES, A., EZQUERRO, LUIS M., SKIBA, ALEXANDER N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 506
container_issue 3
container_start_page 499
container_title Bulletin of the Australian Mathematical Society
container_volume 79
creator BALLESTER-BOLINCHES, A.
EZQUERRO, LUIS M.
SKIBA, ALEXANDER N.
description A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.
doi_str_mv 10.1017/S0004972709000100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786933012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972709000100</cupid><sourcerecordid>2786933012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</originalsourceid><addsrcrecordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH9ZJjCNmkkpQkLXCynNRBLZQUp5Xg73HVCg6I09tm3owGgEuMrjHC_KZECI087nLk2Q4jdAQGmFPqYEbIMRjszs7ufgrO-n5pJ0pdMQB-Ob2Ni3w6KWEewSjN0iqEh8VjWiXQh2VV5FkMg3wWFo4_y9M7PwtCOCnySVhUz-fgpFVvvb441CGYRmEVJM44j9PAHzsN8cTGaRkZKSVqK0uR4rhtWoFchqwlzZVt6XyklVt7wm20IoIwylhb02auqOKckSG42v9dm-5jq_uNXHZb824lpcsF8whB2LUovEc1put7o1u5NouVMl8SI7lLSv5JynKcPWfRb_TnD0GZV8k44VSy-EHeZ088SXAkI4snBw21qs1i_qJ_rfyv8g1s83Hq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786933012</pqid></control><display><type>article</type><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge Journals - CAUL Collection</source><creator>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</creator><creatorcontrib>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</creatorcontrib><description>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972709000100</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>20D15 ; 20D20 ; Avoidance ; cover-avoidance property ; finite group ; Group theory ; Impact analysis ; primary 20D10 ; saturated formation ; Subgroups</subject><ispartof>Bulletin of the Australian Mathematical Society, 2009-06, Vol.79 (3), p.499-506</ispartof><rights>Copyright © Australian Mathematical Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</citedby><cites>FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972709000100/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>EZQUERRO, LUIS M.</creatorcontrib><creatorcontrib>SKIBA, ALEXANDER N.</creatorcontrib><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</description><subject>20D15</subject><subject>20D20</subject><subject>Avoidance</subject><subject>cover-avoidance property</subject><subject>finite group</subject><subject>Group theory</subject><subject>Impact analysis</subject><subject>primary 20D10</subject><subject>saturated formation</subject><subject>Subgroups</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH9ZJjCNmkkpQkLXCynNRBLZQUp5Xg73HVCg6I09tm3owGgEuMrjHC_KZECI087nLk2Q4jdAQGmFPqYEbIMRjszs7ufgrO-n5pJ0pdMQB-Ob2Ni3w6KWEewSjN0iqEh8VjWiXQh2VV5FkMg3wWFo4_y9M7PwtCOCnySVhUz-fgpFVvvb441CGYRmEVJM44j9PAHzsN8cTGaRkZKSVqK0uR4rhtWoFchqwlzZVt6XyklVt7wm20IoIwylhb02auqOKckSG42v9dm-5jq_uNXHZb824lpcsF8whB2LUovEc1put7o1u5NouVMl8SI7lLSv5JynKcPWfRb_TnD0GZV8k44VSy-EHeZ088SXAkI4snBw21qs1i_qJ_rfyv8g1s83Hq</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>BALLESTER-BOLINCHES, A.</creator><creator>EZQUERRO, LUIS M.</creator><creator>SKIBA, ALEXANDER N.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20090601</creationdate><title>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</title><author>BALLESTER-BOLINCHES, A. ; EZQUERRO, LUIS M. ; SKIBA, ALEXANDER N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-f634aa8b55250a71fcf80260727e7a8025d4ea2b982cea3836566fb5cda5a7763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>20D15</topic><topic>20D20</topic><topic>Avoidance</topic><topic>cover-avoidance property</topic><topic>finite group</topic><topic>Group theory</topic><topic>Impact analysis</topic><topic>primary 20D10</topic><topic>saturated formation</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BALLESTER-BOLINCHES, A.</creatorcontrib><creatorcontrib>EZQUERRO, LUIS M.</creatorcontrib><creatorcontrib>SKIBA, ALEXANDER N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BALLESTER-BOLINCHES, A.</au><au>EZQUERRO, LUIS M.</au><au>SKIBA, ALEXANDER N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>79</volume><issue>3</issue><spage>499</spage><epage>506</epage><pages>499-506</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>A subgroup A of a group G has the strong cover-avoidance property in G, or A is a strong CAP-subgroup of G, if A either covers or avoids every chief factor of every subgroup of G containing A. The main aim of the present paper is to analyse the impact of the strong cover and avoidance property of the members of some relevant families of subgroups on the structure of a group.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972709000100</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2009-06, Vol.79 (3), p.499-506
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786933012
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge Journals - CAUL Collection
subjects 20D15
20D20
Avoidance
cover-avoidance property
finite group
Group theory
Impact analysis
primary 20D10
saturated formation
Subgroups
title SUBGROUPS OF FINITE GROUPS WITH A STRONG COVER-AVOIDANCE PROPERTY
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A49%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SUBGROUPS%20OF%20FINITE%20GROUPS%20WITH%20A%20STRONG%20COVER-AVOIDANCE%20PROPERTY&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=BALLESTER-BOLINCHES,%20A.&rft.date=2009-06-01&rft.volume=79&rft.issue=3&rft.spage=499&rft.epage=506&rft.pages=499-506&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972709000100&rft_dat=%3Cproquest_cross%3E2786933012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786933012&rft_id=info:pmid/&rft_cupid=10_1017_S0004972709000100&rfr_iscdi=true