Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers
A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 1999-12, Vol.42 (12), p.1308-1315 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1315 |
---|---|
container_issue | 12 |
container_start_page | 1308 |
container_title | Science China. Mathematics |
container_volume | 42 |
creator | Ge, Lifeng |
description | A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers. |
doi_str_mv | 10.1007/BF02876032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786926299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26934439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</originalsourceid><addsrcrecordid>eNpdkM1KAzEURoMoWGo3PkFAcCGM5mcmkyy1tioU3OjCVcgkGRuZSWqSWfTtTakguLrf4tzLuR8AlxjdYoTau4c1IrxliJITMMOckYq0jJ6WjBCrBOH0HCxSch1qKBU1a8UMfDzuvRqdhqPVW-VdGqHyBrqc4BiMHQbnP2HoYUFiGJXeOm8NtIPVOYaUVS6r05CjSsGXWIJPZtI2pgtw1qsh2cXvnIP39ept-VxtXp9elvebShPOc9U3gva11UZTgpu6qHa6FVhwTnpCG148FedMIYMQNhRpbTujaMNq0dWKcToH18e7uxi-J5uyHF3SxVx5G6YkCRO0rqko4NU_8CtM0Rc3SVrOBGFEHKibI1X-TSnaXu6iG1XcS4zkoWb5VzP9AWVYb04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786926299</pqid></control><display><type>article</type><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><source>SpringerLink Journals (MCLS)</source><source>Alma/SFX Local Collection</source><creator>Ge, Lifeng</creator><creatorcontrib>Ge, Lifeng</creatorcontrib><description>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</description><identifier>ISSN: 1006-9283</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1862-2763</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/BF02876032</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Air gaps ; Air springs ; Compressibility ; Design optimization ; Micromachining ; Resonant frequencies ; Stiffness ; Transducers</subject><ispartof>Science China. Mathematics, 1999-12, Vol.42 (12), p.1308-1315</ispartof><rights>Science in China Press 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</citedby><cites>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Lifeng</creatorcontrib><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><title>Science China. Mathematics</title><description>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</description><subject>Air gaps</subject><subject>Air springs</subject><subject>Compressibility</subject><subject>Design optimization</subject><subject>Micromachining</subject><subject>Resonant frequencies</subject><subject>Stiffness</subject><subject>Transducers</subject><issn>1006-9283</issn><issn>1674-7283</issn><issn>1862-2763</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KAzEURoMoWGo3PkFAcCGM5mcmkyy1tioU3OjCVcgkGRuZSWqSWfTtTakguLrf4tzLuR8AlxjdYoTau4c1IrxliJITMMOckYq0jJ6WjBCrBOH0HCxSch1qKBU1a8UMfDzuvRqdhqPVW-VdGqHyBrqc4BiMHQbnP2HoYUFiGJXeOm8NtIPVOYaUVS6r05CjSsGXWIJPZtI2pgtw1qsh2cXvnIP39ept-VxtXp9elvebShPOc9U3gva11UZTgpu6qHa6FVhwTnpCG148FedMIYMQNhRpbTujaMNq0dWKcToH18e7uxi-J5uyHF3SxVx5G6YkCRO0rqko4NU_8CtM0Rc3SVrOBGFEHKibI1X-TSnaXu6iG1XcS4zkoWb5VzP9AWVYb04</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Ge, Lifeng</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19991201</creationdate><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><author>Ge, Lifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Air gaps</topic><topic>Air springs</topic><topic>Compressibility</topic><topic>Design optimization</topic><topic>Micromachining</topic><topic>Resonant frequencies</topic><topic>Stiffness</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Lifeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Lifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</atitle><jtitle>Science China. Mathematics</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>42</volume><issue>12</issue><spage>1308</spage><epage>1315</epage><pages>1308-1315</pages><issn>1006-9283</issn><issn>1674-7283</issn><eissn>1862-2763</eissn><eissn>1869-1862</eissn><abstract>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02876032</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-9283 |
ispartof | Science China. Mathematics, 1999-12, Vol.42 (12), p.1308-1315 |
issn | 1006-9283 1674-7283 1862-2763 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2786926299 |
source | SpringerLink Journals (MCLS); Alma/SFX Local Collection |
subjects | Air gaps Air springs Compressibility Design optimization Micromachining Resonant frequencies Stiffness Transducers |
title | Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mechanism%20and%20its%20modelling%20of%20micromachined%20electrostatic%20ultrasonic%20transducers&rft.jtitle=Science%20China.%20Mathematics&rft.au=Ge,%20Lifeng&rft.date=1999-12-01&rft.volume=42&rft.issue=12&rft.spage=1308&rft.epage=1315&rft.pages=1308-1315&rft.issn=1006-9283&rft.eissn=1862-2763&rft_id=info:doi/10.1007/BF02876032&rft_dat=%3Cproquest_cross%3E26934439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786926299&rft_id=info:pmid/&rfr_iscdi=true |