Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers

A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 1999-12, Vol.42 (12), p.1308-1315
1. Verfasser: Ge, Lifeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1315
container_issue 12
container_start_page 1308
container_title Science China. Mathematics
container_volume 42
creator Ge, Lifeng
description A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.
doi_str_mv 10.1007/BF02876032
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786926299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>26934439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</originalsourceid><addsrcrecordid>eNpdkM1KAzEURoMoWGo3PkFAcCGM5mcmkyy1tioU3OjCVcgkGRuZSWqSWfTtTakguLrf4tzLuR8AlxjdYoTau4c1IrxliJITMMOckYq0jJ6WjBCrBOH0HCxSch1qKBU1a8UMfDzuvRqdhqPVW-VdGqHyBrqc4BiMHQbnP2HoYUFiGJXeOm8NtIPVOYaUVS6r05CjSsGXWIJPZtI2pgtw1qsh2cXvnIP39ept-VxtXp9elvebShPOc9U3gva11UZTgpu6qHa6FVhwTnpCG148FedMIYMQNhRpbTujaMNq0dWKcToH18e7uxi-J5uyHF3SxVx5G6YkCRO0rqko4NU_8CtM0Rc3SVrOBGFEHKibI1X-TSnaXu6iG1XcS4zkoWb5VzP9AWVYb04</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786926299</pqid></control><display><type>article</type><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><source>SpringerLink Journals (MCLS)</source><source>Alma/SFX Local Collection</source><creator>Ge, Lifeng</creator><creatorcontrib>Ge, Lifeng</creatorcontrib><description>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</description><identifier>ISSN: 1006-9283</identifier><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1862-2763</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/BF02876032</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Air gaps ; Air springs ; Compressibility ; Design optimization ; Micromachining ; Resonant frequencies ; Stiffness ; Transducers</subject><ispartof>Science China. Mathematics, 1999-12, Vol.42 (12), p.1308-1315</ispartof><rights>Science in China Press 1999.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</citedby><cites>FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ge, Lifeng</creatorcontrib><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><title>Science China. Mathematics</title><description>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</description><subject>Air gaps</subject><subject>Air springs</subject><subject>Compressibility</subject><subject>Design optimization</subject><subject>Micromachining</subject><subject>Resonant frequencies</subject><subject>Stiffness</subject><subject>Transducers</subject><issn>1006-9283</issn><issn>1674-7283</issn><issn>1862-2763</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNpdkM1KAzEURoMoWGo3PkFAcCGM5mcmkyy1tioU3OjCVcgkGRuZSWqSWfTtTakguLrf4tzLuR8AlxjdYoTau4c1IrxliJITMMOckYq0jJ6WjBCrBOH0HCxSch1qKBU1a8UMfDzuvRqdhqPVW-VdGqHyBrqc4BiMHQbnP2HoYUFiGJXeOm8NtIPVOYaUVS6r05CjSsGXWIJPZtI2pgtw1qsh2cXvnIP39ept-VxtXp9elvebShPOc9U3gva11UZTgpu6qHa6FVhwTnpCG148FedMIYMQNhRpbTujaMNq0dWKcToH18e7uxi-J5uyHF3SxVx5G6YkCRO0rqko4NU_8CtM0Rc3SVrOBGFEHKibI1X-TSnaXu6iG1XcS4zkoWb5VzP9AWVYb04</recordid><startdate>19991201</startdate><enddate>19991201</enddate><creator>Ge, Lifeng</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>19991201</creationdate><title>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</title><author>Ge, Lifeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-f593f4ecdc32154100bc7919882f2358946a886a0d001d30ccebda35649b4a683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Air gaps</topic><topic>Air springs</topic><topic>Compressibility</topic><topic>Design optimization</topic><topic>Micromachining</topic><topic>Resonant frequencies</topic><topic>Stiffness</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Lifeng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Lifeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers</atitle><jtitle>Science China. Mathematics</jtitle><date>1999-12-01</date><risdate>1999</risdate><volume>42</volume><issue>12</issue><spage>1308</spage><epage>1315</epage><pages>1308-1315</pages><issn>1006-9283</issn><issn>1674-7283</issn><eissn>1862-2763</eissn><eissn>1869-1862</eissn><abstract>A tensile-plate-on-air-spring model (or called TDK model for short) for micromachined electrostatic ultrasonic transducers has been developed based on a thorough investigation of their dynamic mechanism. The mechanical stiffness effects caused by the compressibility of air gaps, bending stiffness of the diaphragm and in-plane tension applied to the diaphragm, together with an electrostatic negative stiffness effect are included completely in the model. Desired particular fundamental frequency and bandwidth can be obtained by only properly tailoring the geometry, dimensions and materials of transducers according to the model, which provides thereby a reliable theoretical basis for the understanding and optimised design of such transducers.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02876032</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-9283
ispartof Science China. Mathematics, 1999-12, Vol.42 (12), p.1308-1315
issn 1006-9283
1674-7283
1862-2763
1869-1862
language eng
recordid cdi_proquest_journals_2786926299
source SpringerLink Journals (MCLS); Alma/SFX Local Collection
subjects Air gaps
Air springs
Compressibility
Design optimization
Micromachining
Resonant frequencies
Stiffness
Transducers
title Dynamic mechanism and its modelling of micromachined electrostatic ultrasonic transducers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A58%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20mechanism%20and%20its%20modelling%20of%20micromachined%20electrostatic%20ultrasonic%20transducers&rft.jtitle=Science%20China.%20Mathematics&rft.au=Ge,%20Lifeng&rft.date=1999-12-01&rft.volume=42&rft.issue=12&rft.spage=1308&rft.epage=1315&rft.pages=1308-1315&rft.issn=1006-9283&rft.eissn=1862-2763&rft_id=info:doi/10.1007/BF02876032&rft_dat=%3Cproquest_cross%3E26934439%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786926299&rft_id=info:pmid/&rfr_iscdi=true