On analytical treatment of all boundary and volume integrals in BEM
In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that...
Gespeichert in:
Veröffentlicht in: | Wuhan University journal of natural sciences 1998-12, Vol.3 (4), p.407-409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 4 |
container_start_page | 407 |
container_title | Wuhan University journal of natural sciences |
container_volume | 3 |
creator | Shaowu, Tang Zhenxing, Feng |
description | In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations. |
doi_str_mv | 10.1007/BF02830039 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786925389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786925389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0HAm7CaP012crRLW4VKL70v2WwiW3Y3NckK_famVPAy84b5Mbx5CD1S8kIJKV-Xa8KAE8LVFZpRpXixUAqus87bgjLCbtFdjIczIUo6Q9VuxHrU_Sl1Rvc4BavTYMeEvcO673Hjp7HV4ZShFv_4fhos7sZkv4LuY1Z4ufq8RzcuT_bhr8_Rfr3aV-_Fdrf5qN62hZFc5SKILkFIaBorheGtaMAJa5gDqhdOKkPBEacZtAoUGMcFMyC1FuCAOz5HT5ezx-C_JxtTffBTyN5jzUqQigkOKlPPF8oEH2Owrj6Gbsgf1JTU5xTq_4z4L49XV-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786925389</pqid></control><display><type>article</type><title>On analytical treatment of all boundary and volume integrals in BEM</title><source>SpringerLink Journals</source><creator>Shaowu, Tang ; Zhenxing, Feng</creator><creatorcontrib>Shaowu, Tang ; Zhenxing, Feng</creatorcontrib><description>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</description><identifier>ISSN: 1007-1202</identifier><identifier>EISSN: 1993-4998</identifier><identifier>DOI: 10.1007/BF02830039</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Differential equations ; Helmholtz equations ; Integrals ; Mathematical analysis ; Mathematical models ; Poisson equation</subject><ispartof>Wuhan University journal of natural sciences, 1998-12, Vol.3 (4), p.407-409</ispartof><rights>Springer 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shaowu, Tang</creatorcontrib><creatorcontrib>Zhenxing, Feng</creatorcontrib><title>On analytical treatment of all boundary and volume integrals in BEM</title><title>Wuhan University journal of natural sciences</title><description>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</description><subject>Differential equations</subject><subject>Helmholtz equations</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poisson equation</subject><issn>1007-1202</issn><issn>1993-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0HAm7CaP012crRLW4VKL70v2WwiW3Y3NckK_famVPAy84b5Mbx5CD1S8kIJKV-Xa8KAE8LVFZpRpXixUAqus87bgjLCbtFdjIczIUo6Q9VuxHrU_Sl1Rvc4BavTYMeEvcO673Hjp7HV4ZShFv_4fhos7sZkv4LuY1Z4ufq8RzcuT_bhr8_Rfr3aV-_Fdrf5qN62hZFc5SKILkFIaBorheGtaMAJa5gDqhdOKkPBEacZtAoUGMcFMyC1FuCAOz5HT5ezx-C_JxtTffBTyN5jzUqQigkOKlPPF8oEH2Owrj6Gbsgf1JTU5xTq_4z4L49XV-U</recordid><startdate>199812</startdate><enddate>199812</enddate><creator>Shaowu, Tang</creator><creator>Zhenxing, Feng</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199812</creationdate><title>On analytical treatment of all boundary and volume integrals in BEM</title><author>Shaowu, Tang ; Zhenxing, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Differential equations</topic><topic>Helmholtz equations</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poisson equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaowu, Tang</creatorcontrib><creatorcontrib>Zhenxing, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Wuhan University journal of natural sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaowu, Tang</au><au>Zhenxing, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On analytical treatment of all boundary and volume integrals in BEM</atitle><jtitle>Wuhan University journal of natural sciences</jtitle><date>1998-12</date><risdate>1998</risdate><volume>3</volume><issue>4</issue><spage>407</spage><epage>409</epage><pages>407-409</pages><issn>1007-1202</issn><eissn>1993-4998</eissn><abstract>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02830039</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-1202 |
ispartof | Wuhan University journal of natural sciences, 1998-12, Vol.3 (4), p.407-409 |
issn | 1007-1202 1993-4998 |
language | eng |
recordid | cdi_proquest_journals_2786925389 |
source | SpringerLink Journals |
subjects | Differential equations Helmholtz equations Integrals Mathematical analysis Mathematical models Poisson equation |
title | On analytical treatment of all boundary and volume integrals in BEM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20analytical%20treatment%20of%20all%20boundary%20and%20volume%20integrals%20in%20BEM&rft.jtitle=Wuhan%20University%20journal%20of%20natural%20sciences&rft.au=Shaowu,%20Tang&rft.date=1998-12&rft.volume=3&rft.issue=4&rft.spage=407&rft.epage=409&rft.pages=407-409&rft.issn=1007-1202&rft.eissn=1993-4998&rft_id=info:doi/10.1007/BF02830039&rft_dat=%3Cproquest_cross%3E2786925389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786925389&rft_id=info:pmid/&rfr_iscdi=true |