On analytical treatment of all boundary and volume integrals in BEM

In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wuhan University journal of natural sciences 1998-12, Vol.3 (4), p.407-409
Hauptverfasser: Shaowu, Tang, Zhenxing, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 4
container_start_page 407
container_title Wuhan University journal of natural sciences
container_volume 3
creator Shaowu, Tang
Zhenxing, Feng
description In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.
doi_str_mv 10.1007/BF02830039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786925389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786925389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsXP0HAm7CaP012crRLW4VKL70v2WwiW3Y3NckK_famVPAy84b5Mbx5CD1S8kIJKV-Xa8KAE8LVFZpRpXixUAqus87bgjLCbtFdjIczIUo6Q9VuxHrU_Sl1Rvc4BavTYMeEvcO673Hjp7HV4ZShFv_4fhos7sZkv4LuY1Z4ufq8RzcuT_bhr8_Rfr3aV-_Fdrf5qN62hZFc5SKILkFIaBorheGtaMAJa5gDqhdOKkPBEacZtAoUGMcFMyC1FuCAOz5HT5ezx-C_JxtTffBTyN5jzUqQigkOKlPPF8oEH2Owrj6Gbsgf1JTU5xTq_4z4L49XV-U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786925389</pqid></control><display><type>article</type><title>On analytical treatment of all boundary and volume integrals in BEM</title><source>SpringerLink Journals</source><creator>Shaowu, Tang ; Zhenxing, Feng</creator><creatorcontrib>Shaowu, Tang ; Zhenxing, Feng</creatorcontrib><description>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</description><identifier>ISSN: 1007-1202</identifier><identifier>EISSN: 1993-4998</identifier><identifier>DOI: 10.1007/BF02830039</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Differential equations ; Helmholtz equations ; Integrals ; Mathematical analysis ; Mathematical models ; Poisson equation</subject><ispartof>Wuhan University journal of natural sciences, 1998-12, Vol.3 (4), p.407-409</ispartof><rights>Springer 1998.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shaowu, Tang</creatorcontrib><creatorcontrib>Zhenxing, Feng</creatorcontrib><title>On analytical treatment of all boundary and volume integrals in BEM</title><title>Wuhan University journal of natural sciences</title><description>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</description><subject>Differential equations</subject><subject>Helmholtz equations</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Poisson equation</subject><issn>1007-1202</issn><issn>1993-4998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWKsXP0HAm7CaP012crRLW4VKL70v2WwiW3Y3NckK_famVPAy84b5Mbx5CD1S8kIJKV-Xa8KAE8LVFZpRpXixUAqus87bgjLCbtFdjIczIUo6Q9VuxHrU_Sl1Rvc4BavTYMeEvcO673Hjp7HV4ZShFv_4fhos7sZkv4LuY1Z4ufq8RzcuT_bhr8_Rfr3aV-_Fdrf5qN62hZFc5SKILkFIaBorheGtaMAJa5gDqhdOKkPBEacZtAoUGMcFMyC1FuCAOz5HT5ezx-C_JxtTffBTyN5jzUqQigkOKlPPF8oEH2Owrj6Gbsgf1JTU5xTq_4z4L49XV-U</recordid><startdate>199812</startdate><enddate>199812</enddate><creator>Shaowu, Tang</creator><creator>Zhenxing, Feng</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199812</creationdate><title>On analytical treatment of all boundary and volume integrals in BEM</title><author>Shaowu, Tang ; Zhenxing, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c639-c650a78568bbe65c3d5b8f5ec2f81a4f69c18f0fa28d9898cf352c86aa58f83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Differential equations</topic><topic>Helmholtz equations</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Poisson equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaowu, Tang</creatorcontrib><creatorcontrib>Zhenxing, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Wuhan University journal of natural sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaowu, Tang</au><au>Zhenxing, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On analytical treatment of all boundary and volume integrals in BEM</atitle><jtitle>Wuhan University journal of natural sciences</jtitle><date>1998-12</date><risdate>1998</risdate><volume>3</volume><issue>4</issue><spage>407</spage><epage>409</epage><pages>407-409</pages><issn>1007-1202</issn><eissn>1993-4998</eissn><abstract>In this paper, the integrals appeared in BEM model for Poisson equation are all implemented analytically. Wherein, the boundary and the domain are discretized by linear boundary elements and linear internal triangle cells respectively. The closed formulations for all integrals are presented so that the computer effort for numerical solution is reduced considerably with higher accuray. The numerical example shows that the results are more accurate in comparision with Gaussian integration in the same discrezition. The basic idea of this paper could be extended to BEM model for Helmholtz equation and/or the time-dependent second other differential equations.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02830039</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1007-1202
ispartof Wuhan University journal of natural sciences, 1998-12, Vol.3 (4), p.407-409
issn 1007-1202
1993-4998
language eng
recordid cdi_proquest_journals_2786925389
source SpringerLink Journals
subjects Differential equations
Helmholtz equations
Integrals
Mathematical analysis
Mathematical models
Poisson equation
title On analytical treatment of all boundary and volume integrals in BEM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T12%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20analytical%20treatment%20of%20all%20boundary%20and%20volume%20integrals%20in%20BEM&rft.jtitle=Wuhan%20University%20journal%20of%20natural%20sciences&rft.au=Shaowu,%20Tang&rft.date=1998-12&rft.volume=3&rft.issue=4&rft.spage=407&rft.epage=409&rft.pages=407-409&rft.issn=1007-1202&rft.eissn=1993-4998&rft_id=info:doi/10.1007/BF02830039&rft_dat=%3Cproquest_cross%3E2786925389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786925389&rft_id=info:pmid/&rfr_iscdi=true