Higher dimensional extensions of substitutions and their dual maps
Given a substitution [sigma] ond letters, we define itsk-dimensional extension,E^sub k^ ([sigma]), for 0
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2001-01, Vol.83 (1), p.183-206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 206 |
---|---|
container_issue | 1 |
container_start_page | 183 |
container_title | Journal d'analyse mathématique (Jerusalem) |
container_volume | 83 |
creator | Sano, Yuki Arnoux, Pierre Ito, Shunji |
description | Given a substitution [sigma] ond letters, we define itsk-dimensional extension,E^sub k^ ([sigma]), for 0 |
doi_str_mv | 10.1007/BF02790261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786919654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4256805561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c285t-23f7027b2cbf6f4ac6b6c7f6d956211311b5ce031ba62f76b4ada2e1d653c733</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKsXf8GCN2F1JtlMskcr1goFL70vSTaxW9puTbKg_97VCt6EgRmG7z0ej7FrhDsEUPezOXBVAyc8YROUJEsthT5lEwCOpSIF5-wipQ2AlLXgEzZbdG9rH4u22_l96vq92Rb-Ix_vVPShSINNuctD_nmYfVvkte9GxTCiO3NIl-wsmG3yV797ylbzp9Xjoly-Pr88PixLx7XMJRdBjeEsdzZQqIwjS04FamtJHFEgWuk8CLSGeFBkK9Ma7rElKZwSYspujraH2L8PPuVm0w9xzJsarjTVWJOs_qNQV-NooWGkbo-Ui31K0YfmELudiZ8NQvNdZPNXpPgCI1pkIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841848380</pqid></control><display><type>article</type><title>Higher dimensional extensions of substitutions and their dual maps</title><source>SpringerLink Journals</source><creator>Sano, Yuki ; Arnoux, Pierre ; Ito, Shunji</creator><creatorcontrib>Sano, Yuki ; Arnoux, Pierre ; Ito, Shunji</creatorcontrib><description>Given a substitution [sigma] ond letters, we define itsk-dimensional extension,E^sub k^ ([sigma]), for 0<=k<=d. Thek-dimensional extension acts on the set ofk-dimensional faces of unit cubes inR^sup d^ with integer vertices. The extensions of a substitution satisfy a commutation relation with the natural boundary operator: the boundary of the image is the image of the boundary. We say that a substitution is unimodular (resp. hyperbolic) if the matrix associated to the substitution by abelianization is unimodular (resp. hyperbolic). In the case where the substitution is unimodular, we also define dual substitutions which satisfy a similar coboundary condition. We use these constructions to build self-similar sets on the expanding and contracting space for an hyperbolic substitution.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/BF02790261</identifier><language>eng</language><publisher>Jerusalem: Springer Nature B.V</publisher><subject>Apexes ; Commutation ; Cubes ; Self-similarity ; Substitutes</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2001-01, Vol.83 (1), p.183-206</ispartof><rights>Hebrew University of Jerusalem 2001</rights><rights>The Hebrew University Magnes Press 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c285t-23f7027b2cbf6f4ac6b6c7f6d956211311b5ce031ba62f76b4ada2e1d653c733</citedby><cites>FETCH-LOGICAL-c285t-23f7027b2cbf6f4ac6b6c7f6d956211311b5ce031ba62f76b4ada2e1d653c733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sano, Yuki</creatorcontrib><creatorcontrib>Arnoux, Pierre</creatorcontrib><creatorcontrib>Ito, Shunji</creatorcontrib><title>Higher dimensional extensions of substitutions and their dual maps</title><title>Journal d'analyse mathématique (Jerusalem)</title><description>Given a substitution [sigma] ond letters, we define itsk-dimensional extension,E^sub k^ ([sigma]), for 0<=k<=d. Thek-dimensional extension acts on the set ofk-dimensional faces of unit cubes inR^sup d^ with integer vertices. The extensions of a substitution satisfy a commutation relation with the natural boundary operator: the boundary of the image is the image of the boundary. We say that a substitution is unimodular (resp. hyperbolic) if the matrix associated to the substitution by abelianization is unimodular (resp. hyperbolic). In the case where the substitution is unimodular, we also define dual substitutions which satisfy a similar coboundary condition. We use these constructions to build self-similar sets on the expanding and contracting space for an hyperbolic substitution.[PUBLICATION ABSTRACT]</description><subject>Apexes</subject><subject>Commutation</subject><subject>Cubes</subject><subject>Self-similarity</subject><subject>Substitutes</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEFLAzEQhYMoWKsXf8GCN2F1JtlMskcr1goFL70vSTaxW9puTbKg_97VCt6EgRmG7z0ej7FrhDsEUPezOXBVAyc8YROUJEsthT5lEwCOpSIF5-wipQ2AlLXgEzZbdG9rH4u22_l96vq92Rb-Ix_vVPShSINNuctD_nmYfVvkte9GxTCiO3NIl-wsmG3yV797ylbzp9Xjoly-Pr88PixLx7XMJRdBjeEsdzZQqIwjS04FamtJHFEgWuk8CLSGeFBkK9Ma7rElKZwSYspujraH2L8PPuVm0w9xzJsarjTVWJOs_qNQV-NooWGkbo-Ui31K0YfmELudiZ8NQvNdZPNXpPgCI1pkIg</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Sano, Yuki</creator><creator>Arnoux, Pierre</creator><creator>Ito, Shunji</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20010101</creationdate><title>Higher dimensional extensions of substitutions and their dual maps</title><author>Sano, Yuki ; Arnoux, Pierre ; Ito, Shunji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c285t-23f7027b2cbf6f4ac6b6c7f6d956211311b5ce031ba62f76b4ada2e1d653c733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Apexes</topic><topic>Commutation</topic><topic>Cubes</topic><topic>Self-similarity</topic><topic>Substitutes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sano, Yuki</creatorcontrib><creatorcontrib>Arnoux, Pierre</creatorcontrib><creatorcontrib>Ito, Shunji</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sano, Yuki</au><au>Arnoux, Pierre</au><au>Ito, Shunji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher dimensional extensions of substitutions and their dual maps</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><date>2001-01-01</date><risdate>2001</risdate><volume>83</volume><issue>1</issue><spage>183</spage><epage>206</epage><pages>183-206</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>Given a substitution [sigma] ond letters, we define itsk-dimensional extension,E^sub k^ ([sigma]), for 0<=k<=d. Thek-dimensional extension acts on the set ofk-dimensional faces of unit cubes inR^sup d^ with integer vertices. The extensions of a substitution satisfy a commutation relation with the natural boundary operator: the boundary of the image is the image of the boundary. We say that a substitution is unimodular (resp. hyperbolic) if the matrix associated to the substitution by abelianization is unimodular (resp. hyperbolic). In the case where the substitution is unimodular, we also define dual substitutions which satisfy a similar coboundary condition. We use these constructions to build self-similar sets on the expanding and contracting space for an hyperbolic substitution.[PUBLICATION ABSTRACT]</abstract><cop>Jerusalem</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02790261</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7670 |
ispartof | Journal d'analyse mathématique (Jerusalem), 2001-01, Vol.83 (1), p.183-206 |
issn | 0021-7670 1565-8538 |
language | eng |
recordid | cdi_proquest_journals_2786919654 |
source | SpringerLink Journals |
subjects | Apexes Commutation Cubes Self-similarity Substitutes |
title | Higher dimensional extensions of substitutions and their dual maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A29%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20dimensional%20extensions%20of%20substitutions%20and%20their%20dual%20maps&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Sano,%20Yuki&rft.date=2001-01-01&rft.volume=83&rft.issue=1&rft.spage=183&rft.epage=206&rft.pages=183-206&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/BF02790261&rft_dat=%3Cproquest_cross%3E4256805561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841848380&rft_id=info:pmid/&rfr_iscdi=true |