Thermodynamic properties of NaZr2(PO4)3
The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsCp0,H0(T) -H0(0),S0(T), andG0(T) -H0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327....
Gespeichert in:
Veröffentlicht in: | Inorganic materials 2000, Vol.36 (4), p.387-391 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 391 |
---|---|
container_issue | 4 |
container_start_page | 387 |
container_title | Inorganic materials |
container_volume | 36 |
creator | Pet’kov, V. I. Kir’yanov, K. V. Orlova, A. I. Kitaev, D. B. |
description | The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsCp0,H0(T) -H0(0),S0(T), andG0(T) -H0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327.1 ±1.0 J/(mol K), and the standard entropy of formation ΔfS0(NaZr2(PO4)3, cr, 298.15 K) = -1101±1 J/(mol K). Solution calorimetry was used to determine the standard enthalpy of formation, ΔfH0(NaZr2(PO4)3, cr, 298.15 K) = -5236 ±5 kJ/mol. By combining the data obtained by the two techniques, the standard Gibbs energy of formation was determined to be ΔfG0(NaZr2(PO4)3, cr, 298.15 K) = -4908 ±5 kJ/mol. |
doi_str_mv | 10.1007/BF02758087 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786919240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786919240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-6768921113217204a84283f8520423693577338c0ca427e060e5b81441c252223</originalsourceid><addsrcrecordid>eNpFUE1LAzEUDKLgWr34CxY8-AGrLy9fb49arArFeqgXLyHGLG5xu2uyPfTfG6ngaWZgmBmGsVMO1xzA3NzNAI0iILPHCq6BKsEN7rMCAKHimtQhO0ppBQBSUV2w8-VniF3_sV27rvXlEPshxLENqeyb8tm9Rbx4WchLccwOGveVwskfTtjr7H45fazmi4en6e288rlnrLTRVCPnXGDWIB1JJNGQyhyFroUyRgjy4J1EE0BDUO_EpeQeFSKKCTvb5eYl35uQRrvqN3GdKy0a0jWvUUJ2Xe1cPvYpxdDYIbadi1vLwf4eYf-PED8V_UoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786919240</pqid></control><display><type>article</type><title>Thermodynamic properties of NaZr2(PO4)3</title><source>Springer Nature - Complete Springer Journals</source><creator>Pet’kov, V. I. ; Kir’yanov, K. V. ; Orlova, A. I. ; Kitaev, D. B.</creator><creatorcontrib>Pet’kov, V. I. ; Kir’yanov, K. V. ; Orlova, A. I. ; Kitaev, D. B.</creatorcontrib><description>The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsCp0,H0(T) -H0(0),S0(T), andG0(T) -H0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327.1 ±1.0 J/(mol K), and the standard entropy of formation ΔfS0(NaZr2(PO4)3, cr, 298.15 K) = -1101±1 J/(mol K). Solution calorimetry was used to determine the standard enthalpy of formation, ΔfH0(NaZr2(PO4)3, cr, 298.15 K) = -5236 ±5 kJ/mol. By combining the data obtained by the two techniques, the standard Gibbs energy of formation was determined to be ΔfG0(NaZr2(PO4)3, cr, 298.15 K) = -4908 ±5 kJ/mol.</description><identifier>ISSN: 0020-1685</identifier><identifier>EISSN: 1608-3172</identifier><identifier>DOI: 10.1007/BF02758087</identifier><language>eng</language><publisher>New York: Springer Nature B.V</publisher><subject>Enthalpy ; Entropy of formation ; Free energy ; Heat measurement ; Heat of formation ; Thermodynamic properties ; Thermodynamics</subject><ispartof>Inorganic materials, 2000, Vol.36 (4), p.387-391</ispartof><rights>MAIK “Nauka/Interperiodica” 2000.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c172t-6768921113217204a84283f8520423693577338c0ca427e060e5b81441c252223</citedby><cites>FETCH-LOGICAL-c172t-6768921113217204a84283f8520423693577338c0ca427e060e5b81441c252223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Pet’kov, V. I.</creatorcontrib><creatorcontrib>Kir’yanov, K. V.</creatorcontrib><creatorcontrib>Orlova, A. I.</creatorcontrib><creatorcontrib>Kitaev, D. B.</creatorcontrib><title>Thermodynamic properties of NaZr2(PO4)3</title><title>Inorganic materials</title><description>The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsCp0,H0(T) -H0(0),S0(T), andG0(T) -H0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327.1 ±1.0 J/(mol K), and the standard entropy of formation ΔfS0(NaZr2(PO4)3, cr, 298.15 K) = -1101±1 J/(mol K). Solution calorimetry was used to determine the standard enthalpy of formation, ΔfH0(NaZr2(PO4)3, cr, 298.15 K) = -5236 ±5 kJ/mol. By combining the data obtained by the two techniques, the standard Gibbs energy of formation was determined to be ΔfG0(NaZr2(PO4)3, cr, 298.15 K) = -4908 ±5 kJ/mol.</description><subject>Enthalpy</subject><subject>Entropy of formation</subject><subject>Free energy</subject><subject>Heat measurement</subject><subject>Heat of formation</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><issn>0020-1685</issn><issn>1608-3172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpFUE1LAzEUDKLgWr34CxY8-AGrLy9fb49arArFeqgXLyHGLG5xu2uyPfTfG6ngaWZgmBmGsVMO1xzA3NzNAI0iILPHCq6BKsEN7rMCAKHimtQhO0ppBQBSUV2w8-VniF3_sV27rvXlEPshxLENqeyb8tm9Rbx4WchLccwOGveVwskfTtjr7H45fazmi4en6e288rlnrLTRVCPnXGDWIB1JJNGQyhyFroUyRgjy4J1EE0BDUO_EpeQeFSKKCTvb5eYl35uQRrvqN3GdKy0a0jWvUUJ2Xe1cPvYpxdDYIbadi1vLwf4eYf-PED8V_UoA</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Pet’kov, V. I.</creator><creator>Kir’yanov, K. V.</creator><creator>Orlova, A. I.</creator><creator>Kitaev, D. B.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2000</creationdate><title>Thermodynamic properties of NaZr2(PO4)3</title><author>Pet’kov, V. I. ; Kir’yanov, K. V. ; Orlova, A. I. ; Kitaev, D. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-6768921113217204a84283f8520423693577338c0ca427e060e5b81441c252223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Enthalpy</topic><topic>Entropy of formation</topic><topic>Free energy</topic><topic>Heat measurement</topic><topic>Heat of formation</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pet’kov, V. I.</creatorcontrib><creatorcontrib>Kir’yanov, K. V.</creatorcontrib><creatorcontrib>Orlova, A. I.</creatorcontrib><creatorcontrib>Kitaev, D. B.</creatorcontrib><collection>CrossRef</collection><jtitle>Inorganic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pet’kov, V. I.</au><au>Kir’yanov, K. V.</au><au>Orlova, A. I.</au><au>Kitaev, D. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic properties of NaZr2(PO4)3</atitle><jtitle>Inorganic materials</jtitle><date>2000</date><risdate>2000</risdate><volume>36</volume><issue>4</issue><spage>387</spage><epage>391</epage><pages>387-391</pages><issn>0020-1685</issn><eissn>1608-3172</eissn><abstract>The heat capacity of crystalline NaZr2(PO4)3 was measured between 7 and 340 K by adiabatic calorimetry. The results were used to calculate the thermodynamic functionsCp0,H0(T) -H0(0),S0(T), andG0(T) -H0(0) in the range 0-340 K. The absolute entropy was found to be S0NaZr2(PO4)3, cr, 298.15 K) = 327.1 ±1.0 J/(mol K), and the standard entropy of formation ΔfS0(NaZr2(PO4)3, cr, 298.15 K) = -1101±1 J/(mol K). Solution calorimetry was used to determine the standard enthalpy of formation, ΔfH0(NaZr2(PO4)3, cr, 298.15 K) = -5236 ±5 kJ/mol. By combining the data obtained by the two techniques, the standard Gibbs energy of formation was determined to be ΔfG0(NaZr2(PO4)3, cr, 298.15 K) = -4908 ±5 kJ/mol.</abstract><cop>New York</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02758087</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-1685 |
ispartof | Inorganic materials, 2000, Vol.36 (4), p.387-391 |
issn | 0020-1685 1608-3172 |
language | eng |
recordid | cdi_proquest_journals_2786919240 |
source | Springer Nature - Complete Springer Journals |
subjects | Enthalpy Entropy of formation Free energy Heat measurement Heat of formation Thermodynamic properties Thermodynamics |
title | Thermodynamic properties of NaZr2(PO4)3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A18%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20properties%20of%20NaZr2(PO4)3&rft.jtitle=Inorganic%20materials&rft.au=Pet%E2%80%99kov,%20V.%20I.&rft.date=2000&rft.volume=36&rft.issue=4&rft.spage=387&rft.epage=391&rft.pages=387-391&rft.issn=0020-1685&rft.eissn=1608-3172&rft_id=info:doi/10.1007/BF02758087&rft_dat=%3Cproquest_cross%3E2786919240%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786919240&rft_id=info:pmid/&rfr_iscdi=true |