Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories
We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic constr...
Gespeichert in:
Veröffentlicht in: | Journal d'analyse mathématique (Jerusalem) 2003-12, Vol.89 (1), p.239-276 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 1 |
container_start_page | 239 |
container_title | Journal d'analyse mathématique (Jerusalem) |
container_volume | 89 |
creator | Ferenczi, Sébastien Holton, Charles Zamboni, Luca Q. |
description | We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF02893083 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786915890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4256806521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsXP8GCN2H1vWTzZ71pabVQ8KCel2w2a7e0m5pkRb-9KSt4Ex7M5fdmmCHkEuEGAeTtwwKoKhkodkQmyAXPFWfqmEwAKOZSSDglZyFsADgvGZ2Q7iX6wcTB28y1WVx7a_Ouj9Z_6m1mv8xa9-82i173oXV-p2Pn-pAtl3eZzozb1V2vo_NdghsbjO_2B2C0Gt821hwAG87JSau3wV786pS8Leavs6d89fy4nN2vckOFiHmNJbCaFQaU5lgoBCmRNpzX2CRNLQsNqBVtG9oKU_CyhILxQnCb-qJkU3I1-u69-xhsiNXGDb5PkRWVSpTIVUr4h0JVpJOlwkRdj5TxLgRv22rvu5323xVCdRi8-huc_QAXg3Fi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841847981</pqid></control><display><type>article</type><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><source>SpringerNature Journals</source><creator>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</creator><creatorcontrib>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</creatorcontrib><description>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/BF02893083</identifier><language>eng</language><publisher>Jerusalem: Springer Nature B.V</publisher><subject>Algorithms ; Arithmetic ; Combinatorial analysis ; Exchanging ; Fractions ; Intervals ; Orbits ; Transformations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2003-12, Vol.89 (1), p.239-276</ispartof><rights>Hebrew University of Jerusalem 2003</rights><rights>Hebrew University of Jerusalem 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</citedby><cites>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferenczi, Sébastien</creatorcontrib><creatorcontrib>Holton, Charles</creatorcontrib><creatorcontrib>Zamboni, Luca Q.</creatorcontrib><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><title>Journal d'analyse mathématique (Jerusalem)</title><description>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Combinatorial analysis</subject><subject>Exchanging</subject><subject>Fractions</subject><subject>Intervals</subject><subject>Orbits</subject><subject>Transformations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEUxIMoWKsXP8GCN2H1vWTzZ71pabVQ8KCel2w2a7e0m5pkRb-9KSt4Ex7M5fdmmCHkEuEGAeTtwwKoKhkodkQmyAXPFWfqmEwAKOZSSDglZyFsADgvGZ2Q7iX6wcTB28y1WVx7a_Ouj9Z_6m1mv8xa9-82i173oXV-p2Pn-pAtl3eZzozb1V2vo_NdghsbjO_2B2C0Gt821hwAG87JSau3wV786pS8Leavs6d89fy4nN2vckOFiHmNJbCaFQaU5lgoBCmRNpzX2CRNLQsNqBVtG9oKU_CyhILxQnCb-qJkU3I1-u69-xhsiNXGDb5PkRWVSpTIVUr4h0JVpJOlwkRdj5TxLgRv22rvu5323xVCdRi8-huc_QAXg3Fi</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Ferenczi, Sébastien</creator><creator>Holton, Charles</creator><creator>Zamboni, Luca Q.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20031201</creationdate><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><author>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Combinatorial analysis</topic><topic>Exchanging</topic><topic>Fractions</topic><topic>Intervals</topic><topic>Orbits</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferenczi, Sébastien</creatorcontrib><creatorcontrib>Holton, Charles</creatorcontrib><creatorcontrib>Zamboni, Luca Q.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferenczi, Sébastien</au><au>Holton, Charles</au><au>Zamboni, Luca Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>89</volume><issue>1</issue><spage>239</spage><epage>276</epage><pages>239-276</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</abstract><cop>Jerusalem</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02893083</doi><tpages>38</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-7670 |
ispartof | Journal d'analyse mathématique (Jerusalem), 2003-12, Vol.89 (1), p.239-276 |
issn | 0021-7670 1565-8538 |
language | eng |
recordid | cdi_proquest_journals_2786915890 |
source | SpringerNature Journals |
subjects | Algorithms Arithmetic Combinatorial analysis Exchanging Fractions Intervals Orbits Transformations |
title | Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20three-interval%20exchange%20transformations%20II:%20a%20combinatorial%20description%20of%20the%20tranjectories&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Ferenczi,%20S%C3%A9bastien&rft.date=2003-12-01&rft.volume=89&rft.issue=1&rft.spage=239&rft.epage=276&rft.pages=239-276&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/BF02893083&rft_dat=%3Cproquest_cross%3E4256806521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841847981&rft_id=info:pmid/&rfr_iscdi=true |