Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories

We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic constr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2003-12, Vol.89 (1), p.239-276
Hauptverfasser: Ferenczi, Sébastien, Holton, Charles, Zamboni, Luca Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 1
container_start_page 239
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 89
creator Ferenczi, Sébastien
Holton, Charles
Zamboni, Luca Q.
description We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF02893083
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786915890</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4256806521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKsXP8GCN2H1vWTzZ71pabVQ8KCel2w2a7e0m5pkRb-9KSt4Ex7M5fdmmCHkEuEGAeTtwwKoKhkodkQmyAXPFWfqmEwAKOZSSDglZyFsADgvGZ2Q7iX6wcTB28y1WVx7a_Ouj9Z_6m1mv8xa9-82i173oXV-p2Pn-pAtl3eZzozb1V2vo_NdghsbjO_2B2C0Gt821hwAG87JSau3wV786pS8Leavs6d89fy4nN2vckOFiHmNJbCaFQaU5lgoBCmRNpzX2CRNLQsNqBVtG9oKU_CyhILxQnCb-qJkU3I1-u69-xhsiNXGDb5PkRWVSpTIVUr4h0JVpJOlwkRdj5TxLgRv22rvu5323xVCdRi8-huc_QAXg3Fi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841847981</pqid></control><display><type>article</type><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><source>SpringerNature Journals</source><creator>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</creator><creatorcontrib>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</creatorcontrib><description>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/BF02893083</identifier><language>eng</language><publisher>Jerusalem: Springer Nature B.V</publisher><subject>Algorithms ; Arithmetic ; Combinatorial analysis ; Exchanging ; Fractions ; Intervals ; Orbits ; Transformations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2003-12, Vol.89 (1), p.239-276</ispartof><rights>Hebrew University of Jerusalem 2003</rights><rights>Hebrew University of Jerusalem 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</citedby><cites>FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ferenczi, Sébastien</creatorcontrib><creatorcontrib>Holton, Charles</creatorcontrib><creatorcontrib>Zamboni, Luca Q.</creatorcontrib><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><title>Journal d'analyse mathématique (Jerusalem)</title><description>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Arithmetic</subject><subject>Combinatorial analysis</subject><subject>Exchanging</subject><subject>Fractions</subject><subject>Intervals</subject><subject>Orbits</subject><subject>Transformations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEUxIMoWKsXP8GCN2H1vWTzZ71pabVQ8KCel2w2a7e0m5pkRb-9KSt4Ex7M5fdmmCHkEuEGAeTtwwKoKhkodkQmyAXPFWfqmEwAKOZSSDglZyFsADgvGZ2Q7iX6wcTB28y1WVx7a_Ouj9Z_6m1mv8xa9-82i173oXV-p2Pn-pAtl3eZzozb1V2vo_NdghsbjO_2B2C0Gt821hwAG87JSau3wV786pS8Leavs6d89fy4nN2vckOFiHmNJbCaFQaU5lgoBCmRNpzX2CRNLQsNqBVtG9oKU_CyhILxQnCb-qJkU3I1-u69-xhsiNXGDb5PkRWVSpTIVUr4h0JVpJOlwkRdj5TxLgRv22rvu5323xVCdRi8-huc_QAXg3Fi</recordid><startdate>20031201</startdate><enddate>20031201</enddate><creator>Ferenczi, Sébastien</creator><creator>Holton, Charles</creator><creator>Zamboni, Luca Q.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20031201</creationdate><title>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</title><author>Ferenczi, Sébastien ; Holton, Charles ; Zamboni, Luca Q.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c266t-b1903b34c08a5148107712d55b1d12d1004a01a82fd2f6c45990435465e156173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Algorithms</topic><topic>Arithmetic</topic><topic>Combinatorial analysis</topic><topic>Exchanging</topic><topic>Fractions</topic><topic>Intervals</topic><topic>Orbits</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferenczi, Sébastien</creatorcontrib><creatorcontrib>Holton, Charles</creatorcontrib><creatorcontrib>Zamboni, Luca Q.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferenczi, Sébastien</au><au>Holton, Charles</au><au>Zamboni, Luca Q.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><date>2003-12-01</date><risdate>2003</risdate><volume>89</volume><issue>1</issue><spage>239</spage><epage>276</epage><pages>239-276</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We describe an algorithm for generating the symbolic sequences which code the orbits of points under an interval exchange transformation on three intervals. The algorithm has two components. The first is an arithmetic division algorithm applied to the lengths of the intervals. This arithmetic construction was originally introduced by the authors in an earlier paper and may be viewed as a two-dimensional generalization of the regular continued fraction. The second component is a combinatorial algorithm which generates the bispecial factors of the associated symbolic subshift as a function of the arithmetic expansion. As a consequence, we obtain a complete characterization of those sequences of block complexity 2n+1 which are natural codings of orbits of three-interval exchange transformations, thereby answering an old question of Rauzy.[PUBLICATION ABSTRACT]</abstract><cop>Jerusalem</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02893083</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2003-12, Vol.89 (1), p.239-276
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2786915890
source SpringerNature Journals
subjects Algorithms
Arithmetic
Combinatorial analysis
Exchanging
Fractions
Intervals
Orbits
Transformations
title Structure of three-interval exchange transformations II: a combinatorial description of the tranjectories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20of%20three-interval%20exchange%20transformations%20II:%20a%20combinatorial%20description%20of%20the%20tranjectories&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Ferenczi,%20S%C3%A9bastien&rft.date=2003-12-01&rft.volume=89&rft.issue=1&rft.spage=239&rft.epage=276&rft.pages=239-276&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/BF02893083&rft_dat=%3Cproquest_cross%3E4256806521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841847981&rft_id=info:pmid/&rfr_iscdi=true