Topological entropy for the canonical completely positive maps on graph C-Algebras

Let C*(E) = C*(se, pv) be the graph C*-algebra of a directed graph E = (E0, E1) with the vertices E0 and the edges E1. We prove that if E is a finite graph (possibly with sinks) and φE: C*(E) → C*(E) is the canonical completely positive map defined by then Voiculescu's topological entropy ht(φE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2004-08, Vol.70 (1), p.101-116
Hauptverfasser: Jeong, Ja A., Park, Gi Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 1
container_start_page 101
container_title Bulletin of the Australian Mathematical Society
container_volume 70
creator Jeong, Ja A.
Park, Gi Hyun
description Let C*(E) = C*(se, pv) be the graph C*-algebra of a directed graph E = (E0, E1) with the vertices E0 and the edges E1. We prove that if E is a finite graph (possibly with sinks) and φE: C*(E) → C*(E) is the canonical completely positive map defined by then Voiculescu's topological entropy ht(φE) of φE is log r(AE), where r(AE) is the spectral radius of the edge matrix AE of E. This extends the same result known for finite graphs with no sinks. We also consider the map φE when E is a locally finite irreducible infinite graph and prove that , where the supremum is taken over the set of all finite subgraphs of E.
doi_str_mv 10.1017/S0004972700035851
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786806708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700035851</cupid><sourcerecordid>2786806708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-d089f3b95f01d18fa6c3f6822ed6c3cd3993d3128a44c405d853840f51fd34733</originalsourceid><addsrcrecordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH8ZJjVbFJZW0RiIvleklT0jjYKaJ_T0orOCBO855m5s3TAHCM0SlGmJ-NEUJZzlPeIaGC4h3Qw5zSBDNCdkFvTSdrfh8cxDjvNkpT0QOPE9_4yhelVhW0dRt8s4LOB9jOLNSq9vU3o_2iqWxrqxVsfCzb8sPChWoi9DUsgmpmcJgMqsJOg4qHYM-pKtqjLfbB08X5ZHiVjO4ur4eDUaJJztrEIJE7Ms2pQ9hg4RTTxDGRptZ0kzYkz4khOBUqy3SGqBGUiAw5ip0hGSekD042d5vg35c2tnLul6HuImXKBROIcSQ6Fd6odPAxButkE8qFCiuJkVxXJ_9U13mSjaeMrf38MajwJhknnEp2-SDvs-fb8ctrKm86PdlmqMU0lKawv6_8n_IF1Vh-1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786806708</pqid></control><display><type>article</type><title>Topological entropy for the canonical completely positive maps on graph C-Algebras</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Jeong, Ja A. ; Park, Gi Hyun</creator><creatorcontrib>Jeong, Ja A. ; Park, Gi Hyun</creatorcontrib><description>Let C*(E) = C*(se, pv) be the graph C*-algebra of a directed graph E = (E0, E1) with the vertices E0 and the edges E1. We prove that if E is a finite graph (possibly with sinks) and φE: C*(E) → C*(E) is the canonical completely positive map defined by then Voiculescu's topological entropy ht(φE) of φE is log r(AE), where r(AE) is the spectral radius of the edge matrix AE of E. This extends the same result known for finite graphs with no sinks. We also consider the map φE when E is a locally finite irreducible infinite graph and prove that , where the supremum is taken over the set of all finite subgraphs of E.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700035851</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Apexes ; Entropy ; Graph theory ; Topology</subject><ispartof>Bulletin of the Australian Mathematical Society, 2004-08, Vol.70 (1), p.101-116</ispartof><rights>Copyright © Australian Mathematical Society 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-d089f3b95f01d18fa6c3f6822ed6c3cd3993d3128a44c405d853840f51fd34733</citedby><cites>FETCH-LOGICAL-c396t-d089f3b95f01d18fa6c3f6822ed6c3cd3993d3128a44c405d853840f51fd34733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700035851/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,55615</link.rule.ids></links><search><creatorcontrib>Jeong, Ja A.</creatorcontrib><creatorcontrib>Park, Gi Hyun</creatorcontrib><title>Topological entropy for the canonical completely positive maps on graph C-Algebras</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>Let C*(E) = C*(se, pv) be the graph C*-algebra of a directed graph E = (E0, E1) with the vertices E0 and the edges E1. We prove that if E is a finite graph (possibly with sinks) and φE: C*(E) → C*(E) is the canonical completely positive map defined by then Voiculescu's topological entropy ht(φE) of φE is log r(AE), where r(AE) is the spectral radius of the edge matrix AE of E. This extends the same result known for finite graphs with no sinks. We also consider the map φE when E is a locally finite irreducible infinite graph and prove that , where the supremum is taken over the set of all finite subgraphs of E.</description><subject>Apexes</subject><subject>Entropy</subject><subject>Graph theory</subject><subject>Topology</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMlOwzAUtBBIlMIHcLPEOWDH8ZJjVbFJZW0RiIvleklT0jjYKaJ_T0orOCBO855m5s3TAHCM0SlGmJ-NEUJZzlPeIaGC4h3Qw5zSBDNCdkFvTSdrfh8cxDjvNkpT0QOPE9_4yhelVhW0dRt8s4LOB9jOLNSq9vU3o_2iqWxrqxVsfCzb8sPChWoi9DUsgmpmcJgMqsJOg4qHYM-pKtqjLfbB08X5ZHiVjO4ur4eDUaJJztrEIJE7Ms2pQ9hg4RTTxDGRptZ0kzYkz4khOBUqy3SGqBGUiAw5ip0hGSekD042d5vg35c2tnLul6HuImXKBROIcSQ6Fd6odPAxButkE8qFCiuJkVxXJ_9U13mSjaeMrf38MajwJhknnEp2-SDvs-fb8ctrKm86PdlmqMU0lKawv6_8n_IF1Vh-1A</recordid><startdate>20040801</startdate><enddate>20040801</enddate><creator>Jeong, Ja A.</creator><creator>Park, Gi Hyun</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040801</creationdate><title>Topological entropy for the canonical completely positive maps on graph C-Algebras</title><author>Jeong, Ja A. ; Park, Gi Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-d089f3b95f01d18fa6c3f6822ed6c3cd3993d3128a44c405d853840f51fd34733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Apexes</topic><topic>Entropy</topic><topic>Graph theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jeong, Ja A.</creatorcontrib><creatorcontrib>Park, Gi Hyun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jeong, Ja A.</au><au>Park, Gi Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological entropy for the canonical completely positive maps on graph C-Algebras</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>2004-08-01</date><risdate>2004</risdate><volume>70</volume><issue>1</issue><spage>101</spage><epage>116</epage><pages>101-116</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Let C*(E) = C*(se, pv) be the graph C*-algebra of a directed graph E = (E0, E1) with the vertices E0 and the edges E1. We prove that if E is a finite graph (possibly with sinks) and φE: C*(E) → C*(E) is the canonical completely positive map defined by then Voiculescu's topological entropy ht(φE) of φE is log r(AE), where r(AE) is the spectral radius of the edge matrix AE of E. This extends the same result known for finite graphs with no sinks. We also consider the map φE when E is a locally finite irreducible infinite graph and prove that , where the supremum is taken over the set of all finite subgraphs of E.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700035851</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2004-08, Vol.70 (1), p.101-116
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786806708
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete
subjects Apexes
Entropy
Graph theory
Topology
title Topological entropy for the canonical completely positive maps on graph C-Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20entropy%20for%20the%20canonical%20completely%20positive%20maps%20on%20graph%20C-Algebras&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Jeong,%20Ja%20A.&rft.date=2004-08-01&rft.volume=70&rft.issue=1&rft.spage=101&rft.epage=116&rft.pages=101-116&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700035851&rft_dat=%3Cproquest_cross%3E2786806708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786806708&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700035851&rfr_iscdi=true