An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement
Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/02/01, Vol.E106.A(2), pp.124-132 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 132 |
---|---|
container_issue | 2 |
container_start_page | 124 |
container_title | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences |
container_volume | E106.A |
creator | MATSUO, Atsushi HATTORI, Wakaki YAMASHITA, Shigeru |
description | Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method. |
doi_str_mv | 10.1587/transfun.2022EAP1050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786737394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786737394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3300-173b7b1fb8f901ec10bf3c570fc7a041b776d2ae38c874fa2355d674bab5c8873</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EEqXwDxgsMQf8EcfuGJVQkFpRUGG1HMemqVo72M7Avyeo0DK9O5xzn3QBuMboFjPB71JQLtre3RJESFUuMWLoBIwwz1mGKeWnYIQmuMgEQ-IcXMS4QQgLgvMReC8drKxtdWtcgguT1r6BycN7o_2u89FA5Rq4UB1cLBfTFZypZCJcrVWCpda-dylC6wN86es2weVWabMbmi7BmVXbaK5-7xi8PVSr6WM2f549Tct5pilFKMOc1rzGthZ2grDRGNWWasaR1VyhHNecFw1RhgoteG4VoYw1Bc9rVTMtBKdjcLPv7YL_7E1McuP74IaXknBRcMrpJB-ofE_p4GMMxsoutDsVviRG8mdB-beg_LfgoL3utU1M6sMcJBVSq7fmKFUYFbKU5BCOJQdYr1WQxtFv-OmCAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786737394</pqid></control><display><type>article</type><title>An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement</title><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>MATSUO, Atsushi ; HATTORI, Wakaki ; YAMASHITA, Shigeru</creator><creatorcontrib>MATSUO, Atsushi ; HATTORI, Wakaki ; YAMASHITA, Shigeru</creatorcontrib><description>Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method.</description><identifier>ISSN: 0916-8508</identifier><identifier>EISSN: 1745-1337</identifier><identifier>DOI: 10.1587/transfun.2022EAP1050</identifier><language>eng</language><publisher>Tokyo: The Institute of Electronics, Information and Communication Engineers</publisher><subject>Decomposition ; Gates (circuits) ; Inserts ; Logic circuits ; Mixed-Polarity Multiple-Control Toffoli (MPMCT) gate ; nearest neighbor architecture (NNA) ; Placement ; quantum circuit ; Quantum computing ; Qubits (quantum computing)</subject><ispartof>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/02/01, Vol.E106.A(2), pp.124-132</ispartof><rights>2023 The Institute of Electronics, Information and Communication Engineers</rights><rights>Copyright Japan Science and Technology Agency 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3300-173b7b1fb8f901ec10bf3c570fc7a041b776d2ae38c874fa2355d674bab5c8873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1876,27903,27904</link.rule.ids></links><search><creatorcontrib>MATSUO, Atsushi</creatorcontrib><creatorcontrib>HATTORI, Wakaki</creatorcontrib><creatorcontrib>YAMASHITA, Shigeru</creatorcontrib><title>An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement</title><title>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</title><addtitle>IEICE Trans. Fundamentals</addtitle><description>Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method.</description><subject>Decomposition</subject><subject>Gates (circuits)</subject><subject>Inserts</subject><subject>Logic circuits</subject><subject>Mixed-Polarity Multiple-Control Toffoli (MPMCT) gate</subject><subject>nearest neighbor architecture (NNA)</subject><subject>Placement</subject><subject>quantum circuit</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><issn>0916-8508</issn><issn>1745-1337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EEqXwDxgsMQf8EcfuGJVQkFpRUGG1HMemqVo72M7Avyeo0DK9O5xzn3QBuMboFjPB71JQLtre3RJESFUuMWLoBIwwz1mGKeWnYIQmuMgEQ-IcXMS4QQgLgvMReC8drKxtdWtcgguT1r6BycN7o_2u89FA5Rq4UB1cLBfTFZypZCJcrVWCpda-dylC6wN86es2weVWabMbmi7BmVXbaK5-7xi8PVSr6WM2f549Tct5pilFKMOc1rzGthZ2grDRGNWWasaR1VyhHNecFw1RhgoteG4VoYw1Bc9rVTMtBKdjcLPv7YL_7E1McuP74IaXknBRcMrpJB-ofE_p4GMMxsoutDsVviRG8mdB-beg_LfgoL3utU1M6sMcJBVSq7fmKFUYFbKU5BCOJQdYr1WQxtFv-OmCAg</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>MATSUO, Atsushi</creator><creator>HATTORI, Wakaki</creator><creator>YAMASHITA, Shigeru</creator><general>The Institute of Electronics, Information and Communication Engineers</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230201</creationdate><title>An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement</title><author>MATSUO, Atsushi ; HATTORI, Wakaki ; YAMASHITA, Shigeru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3300-173b7b1fb8f901ec10bf3c570fc7a041b776d2ae38c874fa2355d674bab5c8873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Decomposition</topic><topic>Gates (circuits)</topic><topic>Inserts</topic><topic>Logic circuits</topic><topic>Mixed-Polarity Multiple-Control Toffoli (MPMCT) gate</topic><topic>nearest neighbor architecture (NNA)</topic><topic>Placement</topic><topic>quantum circuit</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MATSUO, Atsushi</creatorcontrib><creatorcontrib>HATTORI, Wakaki</creatorcontrib><creatorcontrib>YAMASHITA, Shigeru</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MATSUO, Atsushi</au><au>HATTORI, Wakaki</au><au>YAMASHITA, Shigeru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement</atitle><jtitle>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</jtitle><addtitle>IEICE Trans. Fundamentals</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>E106.A</volume><issue>2</issue><spage>124</spage><epage>132</epage><pages>124-132</pages><artnum>2022EAP1050</artnum><issn>0916-8508</issn><eissn>1745-1337</eissn><abstract>Mixed-Polarity Multiple-Control Toffoli (MPMCT) gates are generally used to implement large control logic functions for quantum computation. A logic circuit consisting of MPMCT gates needs to be mapped to a quantum computing device that invariably has a physical limitation, which means we need to (1) decompose the MPMCT gates into one- or two-qubit gates, and then (2) insert SWAP gates so that all the gates can be performed on Nearest Neighbor Architectures (NNAs). Up to date, the above two processes have only been studied independently. In this work, we investigate that the total number of gates in a circuit can be decreased if the above two processes are considered simultaneously as a single step. We developed a method that inserts SWAP gates while decomposing MPMCT gates unlike most of the existing methods. Also, we consider the effect on the latter part of a circuit carefully by considering the qubit placement when decomposing an MPMCT gate. Experimental results demonstrate the effectiveness of our method.</abstract><cop>Tokyo</cop><pub>The Institute of Electronics, Information and Communication Engineers</pub><doi>10.1587/transfun.2022EAP1050</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-8508 |
ispartof | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2023/02/01, Vol.E106.A(2), pp.124-132 |
issn | 0916-8508 1745-1337 |
language | eng |
recordid | cdi_proquest_journals_2786737394 |
source | J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese |
subjects | Decomposition Gates (circuits) Inserts Logic circuits Mixed-Polarity Multiple-Control Toffoli (MPMCT) gate nearest neighbor architecture (NNA) Placement quantum circuit Quantum computing Qubits (quantum computing) |
title | An Efficient Method to Decompose and Map MPMCT Gates That Accounts for Qubit Placement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Method%20to%20Decompose%20and%20Map%20MPMCT%20Gates%20That%20Accounts%20for%20Qubit%20Placement&rft.jtitle=IEICE%20Transactions%20on%20Fundamentals%20of%20Electronics,%20Communications%20and%20Computer%20Sciences&rft.au=MATSUO,%20Atsushi&rft.date=2023-02-01&rft.volume=E106.A&rft.issue=2&rft.spage=124&rft.epage=132&rft.pages=124-132&rft.artnum=2022EAP1050&rft.issn=0916-8508&rft.eissn=1745-1337&rft_id=info:doi/10.1587/transfun.2022EAP1050&rft_dat=%3Cproquest_cross%3E2786737394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786737394&rft_id=info:pmid/&rfr_iscdi=true |