Progress in Creation of a New Constant Medium for Hyperpolarized MRI

The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2020-05, Vol.843, p.52-57
Hauptverfasser: Tanaka, Masayoshi, Yosoi, Masaru, Rouillé, Gérard, Frossati, Georgio, Fujimura, Hisako, Ueda, Kunihiro, de Waard, Arlette, Ohta, Takeshi, Fujiwara, Mamoru, Makino, Seiji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 57
container_issue
container_start_page 52
container_title Key engineering materials
container_volume 843
creator Tanaka, Masayoshi
Yosoi, Masaru
Rouillé, Gérard
Frossati, Georgio
Fujimura, Hisako
Ueda, Kunihiro
de Waard, Arlette
Ohta, Takeshi
Fujiwara, Mamoru
Makino, Seiji
description The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise levels. To overcome these restrictions, we started developing a method to remarkably enlarge the NMR signals about 10 years ago. We employ a method to hyperpolarize the nuclei, where the “hyperpolarize” means to artificially generate the nuclear polarization by many orders (102~106) of magnitude higher than the ordinary NMR signals currently in use. The hyperpolarized MRI would enable us to provide images with much higher spatial resolution and shorter measuring time than ever. Several techniques for hyperpolarization have been put into practical use; the BF (Brute Force) method, PHIP (Parahydrogen Induced Polarization) method, Laser optical pumping, DNP (Dynamic Nuclear Polarization), and so on. The experimental study on the hyperpolarization of 3He by the BF method, and that of 19F in PFC (Perfluorocarbon, known as an artificial blood) by the PHIP method has gotten started. In the former method, we use an extremely low temperature realized by the Pomeranchuk cooling in combination with 3He/4He dilution refrigerator and high magnetic field. In the latter method, we use the hydrogenation of the parahydrogen in the unsaturated hydrocarbon substrate at room temperature. Very recently, we started developing a novel type of the hyperpolarized MRI named HMM (Hyperpolarized Metabolic MRI) hoping for the cancer diagnosis.
doi_str_mv 10.4028/www.scientific.net/KEM.843.52
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786571085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786571085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2082-518144001556feb8343a1970621d947d1600cd67da97a77d41a4f725fee1b5c43</originalsourceid><addsrcrecordid>eNqNkE1LwzAYx4MoOKffISAe2yVp3noQkTndcFMRPYesTTRja2rSUeanNzJhV0_P__B_4fkBcIVRThGRo77v81g503TOuipvTDd6nCxySYuckSMwwJyTrBQlO04a4SIrJeGn4CzGFUIFlpgNwN1L8B_BxAhdA8fB6M75BnoLNXwyPRz7Jna66eDC1G67gdYHON21JrR-rYP7NjVcvM7OwYnV62gu_u4QvN9P3sbTbP78MBvfzrOKIEkyliYpRQgzxq1ZyoIWGpcCcYLrkooac4Sqmotal0ILUVOsqRWEWWPwklW0GILLfW8b_NfWxE6t_DY0aVIRITkTGEmWXNd7VxV8jMFY1Qa30WGnMFK_4FQCpw7gVAKnEjiVwClGUv5mn--CTt-b6vMw87-GH3HcfSg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786571085</pqid></control><display><type>article</type><title>Progress in Creation of a New Constant Medium for Hyperpolarized MRI</title><source>Scientific.net Journals</source><creator>Tanaka, Masayoshi ; Yosoi, Masaru ; Rouillé, Gérard ; Frossati, Georgio ; Fujimura, Hisako ; Ueda, Kunihiro ; de Waard, Arlette ; Ohta, Takeshi ; Fujiwara, Mamoru ; Makino, Seiji</creator><creatorcontrib>Tanaka, Masayoshi ; Yosoi, Masaru ; Rouillé, Gérard ; Frossati, Georgio ; Fujimura, Hisako ; Ueda, Kunihiro ; de Waard, Arlette ; Ohta, Takeshi ; Fujiwara, Mamoru ; Makino, Seiji</creatorcontrib><description>The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise levels. To overcome these restrictions, we started developing a method to remarkably enlarge the NMR signals about 10 years ago. We employ a method to hyperpolarize the nuclei, where the “hyperpolarize” means to artificially generate the nuclear polarization by many orders (102~106) of magnitude higher than the ordinary NMR signals currently in use. The hyperpolarized MRI would enable us to provide images with much higher spatial resolution and shorter measuring time than ever. Several techniques for hyperpolarization have been put into practical use; the BF (Brute Force) method, PHIP (Parahydrogen Induced Polarization) method, Laser optical pumping, DNP (Dynamic Nuclear Polarization), and so on. The experimental study on the hyperpolarization of 3He by the BF method, and that of 19F in PFC (Perfluorocarbon, known as an artificial blood) by the PHIP method has gotten started. In the former method, we use an extremely low temperature realized by the Pomeranchuk cooling in combination with 3He/4He dilution refrigerator and high magnetic field. In the latter method, we use the hydrogenation of the parahydrogen in the unsaturated hydrocarbon substrate at room temperature. Very recently, we started developing a novel type of the hyperpolarized MRI named HMM (Hyperpolarized Metabolic MRI) hoping for the cancer diagnosis.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.843.52</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Acids ; Cancer ; Contrast agents ; Cooling ; Dilution ; Feasibility studies ; Hydrocarbons ; Hydrogenation ; Induced polarization ; Laser pumping ; Low temperature ; Magnetic fields ; Magnetic resonance imaging ; Medical diagnosis ; Metabolism ; NMR ; Noise levels ; Nuclear magnetic resonance ; Optical pumping ; Perfluorocarbons ; Physics ; Radiation ; Room temperature ; Spatial resolution ; Substrates ; Time measurement</subject><ispartof>Key engineering materials, 2020-05, Vol.843, p.52-57</ispartof><rights>2020 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. May 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2082-518144001556feb8343a1970621d947d1600cd67da97a77d41a4f725fee1b5c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/5925?width=600</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Tanaka, Masayoshi</creatorcontrib><creatorcontrib>Yosoi, Masaru</creatorcontrib><creatorcontrib>Rouillé, Gérard</creatorcontrib><creatorcontrib>Frossati, Georgio</creatorcontrib><creatorcontrib>Fujimura, Hisako</creatorcontrib><creatorcontrib>Ueda, Kunihiro</creatorcontrib><creatorcontrib>de Waard, Arlette</creatorcontrib><creatorcontrib>Ohta, Takeshi</creatorcontrib><creatorcontrib>Fujiwara, Mamoru</creatorcontrib><creatorcontrib>Makino, Seiji</creatorcontrib><title>Progress in Creation of a New Constant Medium for Hyperpolarized MRI</title><title>Key engineering materials</title><description>The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise levels. To overcome these restrictions, we started developing a method to remarkably enlarge the NMR signals about 10 years ago. We employ a method to hyperpolarize the nuclei, where the “hyperpolarize” means to artificially generate the nuclear polarization by many orders (102~106) of magnitude higher than the ordinary NMR signals currently in use. The hyperpolarized MRI would enable us to provide images with much higher spatial resolution and shorter measuring time than ever. Several techniques for hyperpolarization have been put into practical use; the BF (Brute Force) method, PHIP (Parahydrogen Induced Polarization) method, Laser optical pumping, DNP (Dynamic Nuclear Polarization), and so on. The experimental study on the hyperpolarization of 3He by the BF method, and that of 19F in PFC (Perfluorocarbon, known as an artificial blood) by the PHIP method has gotten started. In the former method, we use an extremely low temperature realized by the Pomeranchuk cooling in combination with 3He/4He dilution refrigerator and high magnetic field. In the latter method, we use the hydrogenation of the parahydrogen in the unsaturated hydrocarbon substrate at room temperature. Very recently, we started developing a novel type of the hyperpolarized MRI named HMM (Hyperpolarized Metabolic MRI) hoping for the cancer diagnosis.</description><subject>Acids</subject><subject>Cancer</subject><subject>Contrast agents</subject><subject>Cooling</subject><subject>Dilution</subject><subject>Feasibility studies</subject><subject>Hydrocarbons</subject><subject>Hydrogenation</subject><subject>Induced polarization</subject><subject>Laser pumping</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetic resonance imaging</subject><subject>Medical diagnosis</subject><subject>Metabolism</subject><subject>NMR</subject><subject>Noise levels</subject><subject>Nuclear magnetic resonance</subject><subject>Optical pumping</subject><subject>Perfluorocarbons</subject><subject>Physics</subject><subject>Radiation</subject><subject>Room temperature</subject><subject>Spatial resolution</subject><subject>Substrates</subject><subject>Time measurement</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1LwzAYx4MoOKffISAe2yVp3noQkTndcFMRPYesTTRja2rSUeanNzJhV0_P__B_4fkBcIVRThGRo77v81g503TOuipvTDd6nCxySYuckSMwwJyTrBQlO04a4SIrJeGn4CzGFUIFlpgNwN1L8B_BxAhdA8fB6M75BnoLNXwyPRz7Jna66eDC1G67gdYHON21JrR-rYP7NjVcvM7OwYnV62gu_u4QvN9P3sbTbP78MBvfzrOKIEkyliYpRQgzxq1ZyoIWGpcCcYLrkooac4Sqmotal0ILUVOsqRWEWWPwklW0GILLfW8b_NfWxE6t_DY0aVIRITkTGEmWXNd7VxV8jMFY1Qa30WGnMFK_4FQCpw7gVAKnEjiVwClGUv5mn--CTt-b6vMw87-GH3HcfSg</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Tanaka, Masayoshi</creator><creator>Yosoi, Masaru</creator><creator>Rouillé, Gérard</creator><creator>Frossati, Georgio</creator><creator>Fujimura, Hisako</creator><creator>Ueda, Kunihiro</creator><creator>de Waard, Arlette</creator><creator>Ohta, Takeshi</creator><creator>Fujiwara, Mamoru</creator><creator>Makino, Seiji</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200501</creationdate><title>Progress in Creation of a New Constant Medium for Hyperpolarized MRI</title><author>Tanaka, Masayoshi ; Yosoi, Masaru ; Rouillé, Gérard ; Frossati, Georgio ; Fujimura, Hisako ; Ueda, Kunihiro ; de Waard, Arlette ; Ohta, Takeshi ; Fujiwara, Mamoru ; Makino, Seiji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2082-518144001556feb8343a1970621d947d1600cd67da97a77d41a4f725fee1b5c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Cancer</topic><topic>Contrast agents</topic><topic>Cooling</topic><topic>Dilution</topic><topic>Feasibility studies</topic><topic>Hydrocarbons</topic><topic>Hydrogenation</topic><topic>Induced polarization</topic><topic>Laser pumping</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetic resonance imaging</topic><topic>Medical diagnosis</topic><topic>Metabolism</topic><topic>NMR</topic><topic>Noise levels</topic><topic>Nuclear magnetic resonance</topic><topic>Optical pumping</topic><topic>Perfluorocarbons</topic><topic>Physics</topic><topic>Radiation</topic><topic>Room temperature</topic><topic>Spatial resolution</topic><topic>Substrates</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tanaka, Masayoshi</creatorcontrib><creatorcontrib>Yosoi, Masaru</creatorcontrib><creatorcontrib>Rouillé, Gérard</creatorcontrib><creatorcontrib>Frossati, Georgio</creatorcontrib><creatorcontrib>Fujimura, Hisako</creatorcontrib><creatorcontrib>Ueda, Kunihiro</creatorcontrib><creatorcontrib>de Waard, Arlette</creatorcontrib><creatorcontrib>Ohta, Takeshi</creatorcontrib><creatorcontrib>Fujiwara, Mamoru</creatorcontrib><creatorcontrib>Makino, Seiji</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tanaka, Masayoshi</au><au>Yosoi, Masaru</au><au>Rouillé, Gérard</au><au>Frossati, Georgio</au><au>Fujimura, Hisako</au><au>Ueda, Kunihiro</au><au>de Waard, Arlette</au><au>Ohta, Takeshi</au><au>Fujiwara, Mamoru</au><au>Makino, Seiji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progress in Creation of a New Constant Medium for Hyperpolarized MRI</atitle><jtitle>Key engineering materials</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>843</volume><spage>52</spage><epage>57</epage><pages>52-57</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The MRI (Magnetic Resonance Imaging) has been used as one of the powerful tools for medical diagnoses. Its usefulness is, however, still restricted because of the low spatial resolution and long measuring time mainly due to the low NMR (Nuclear Magnetic Resonance) signals relative to the noise levels. To overcome these restrictions, we started developing a method to remarkably enlarge the NMR signals about 10 years ago. We employ a method to hyperpolarize the nuclei, where the “hyperpolarize” means to artificially generate the nuclear polarization by many orders (102~106) of magnitude higher than the ordinary NMR signals currently in use. The hyperpolarized MRI would enable us to provide images with much higher spatial resolution and shorter measuring time than ever. Several techniques for hyperpolarization have been put into practical use; the BF (Brute Force) method, PHIP (Parahydrogen Induced Polarization) method, Laser optical pumping, DNP (Dynamic Nuclear Polarization), and so on. The experimental study on the hyperpolarization of 3He by the BF method, and that of 19F in PFC (Perfluorocarbon, known as an artificial blood) by the PHIP method has gotten started. In the former method, we use an extremely low temperature realized by the Pomeranchuk cooling in combination with 3He/4He dilution refrigerator and high magnetic field. In the latter method, we use the hydrogenation of the parahydrogen in the unsaturated hydrocarbon substrate at room temperature. Very recently, we started developing a novel type of the hyperpolarized MRI named HMM (Hyperpolarized Metabolic MRI) hoping for the cancer diagnosis.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.843.52</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2020-05, Vol.843, p.52-57
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_journals_2786571085
source Scientific.net Journals
subjects Acids
Cancer
Contrast agents
Cooling
Dilution
Feasibility studies
Hydrocarbons
Hydrogenation
Induced polarization
Laser pumping
Low temperature
Magnetic fields
Magnetic resonance imaging
Medical diagnosis
Metabolism
NMR
Noise levels
Nuclear magnetic resonance
Optical pumping
Perfluorocarbons
Physics
Radiation
Room temperature
Spatial resolution
Substrates
Time measurement
title Progress in Creation of a New Constant Medium for Hyperpolarized MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T13%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progress%20in%20Creation%20of%20a%20New%20Constant%20Medium%20for%20Hyperpolarized%20MRI&rft.jtitle=Key%20engineering%20materials&rft.au=Tanaka,%20Masayoshi&rft.date=2020-05-01&rft.volume=843&rft.spage=52&rft.epage=57&rft.pages=52-57&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/www.scientific.net/KEM.843.52&rft_dat=%3Cproquest_cross%3E2786571085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786571085&rft_id=info:pmid/&rfr_iscdi=true