Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning

The design of plasmonic stack metamaterials (PSMs) is critical due to their promising potentials in the fields of optical absorbers, sensors, and thermal irradiation. Compared with the classical circuit‐based optimization, the design by deep learning (DL) has attracted greater attention, since it is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Laser & photonics reviews 2023-03, Vol.17 (3), p.n/a
Hauptverfasser: Xiong, Jiankai, Shen, Jiaqing, Gao, Yuan, Chen, Yingshi, Ou, Jun‐Yu, Liu, Qing Huo, Zhu, Jinfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Laser & photonics reviews
container_volume 17
creator Xiong, Jiankai
Shen, Jiaqing
Gao, Yuan
Chen, Yingshi
Ou, Jun‐Yu
Liu, Qing Huo
Zhu, Jinfeng
description The design of plasmonic stack metamaterials (PSMs) is critical due to their promising potentials in the fields of optical absorbers, sensors, and thermal irradiation. Compared with the classical circuit‐based optimization, the design by deep learning (DL) has attracted greater attention, since it is not essential to obtain their equivalent circuit parameters. Currently, a DL model for their higher‐precision design, especially with complicated spectral features, is still quite in demand. Here, a divide‐and‐conquer DL model based on a bidirectional artificial neural network is proposed. As proof‐of‐concept examples, the PSMs consisting of two metal/dielectric/metal/dielectric subwavelength stacks are adopted to demonstrate the validity of the paradigm. It demonstrates a significant prediction error reduction of 37.5% with the 47.8% decrease of training parameters than the conventional method in the forward network, which supports a powerful inverse design from spectra to PSM structures. Furthermore, a flexible tool based on the free customer definition, which facilitates the real‐time design of PSMs with various circuit‐analog functions, is developed. The fabrication and measurement experiments verify the design performance of the method. The study enhances the precision and convenience of on‐demand circuit‐analog PSMs and will provide a guide for fast high‐performance inverse design of many other metamaterials. A divide‐and‐conquer deep learning model, which boosts the photonic design precision with much fewer training parameters, is developed. A flexible and universal method is developed for a plasmonic stack metamaterial design customer to freely define the circuit‐analog properties of a target spectrum. The experimental results exhibit good agreement with the deep learning design.
doi_str_mv 10.1002/lpor.202100738
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786310915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786310915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-6d85fb318d7665592debc38f6d57a612577bfd9d6278f70e10be7568d9ab52d03</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMltibrET-SdjlfInBbUqZbac2KlcEjvYKdCNR-AZeRJcFZURD9f3yuc7uj4AXGI0xggl103n_DhBSRxYyo_AAHOajjjPsuNDz9EpOAthjRCJhw7Ax0LL5vvza2laDWc2dlPdSqvgVAezstDVMDe-2pg-Pk2sbNwKzhsZWmdNBZ96Wb3AR93LVvbaG9kEWG7h1LwZpSMQjWLNnX3daB8tdQcLLb01dnUOTuoo1xe_9xA8394s8_tRMbt7yCfFqEox4yOqOKnLFHPFKCUkS5Quq5TXVBEmKU4IY2WtMkUTxmuGNEalZoRylcmSJAqlQ3C19-28i1uEXqzdxsePBBERmmKUYRJV472q8i4Er2vRedNKvxUYiV26YpeuOKQbgWwPvJtGb_9Ri2I-W_yxP8I8g-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786310915</pqid></control><display><type>article</type><title>Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning</title><source>Wiley Online Library All Journals</source><creator>Xiong, Jiankai ; Shen, Jiaqing ; Gao, Yuan ; Chen, Yingshi ; Ou, Jun‐Yu ; Liu, Qing Huo ; Zhu, Jinfeng</creator><creatorcontrib>Xiong, Jiankai ; Shen, Jiaqing ; Gao, Yuan ; Chen, Yingshi ; Ou, Jun‐Yu ; Liu, Qing Huo ; Zhu, Jinfeng</creatorcontrib><description>The design of plasmonic stack metamaterials (PSMs) is critical due to their promising potentials in the fields of optical absorbers, sensors, and thermal irradiation. Compared with the classical circuit‐based optimization, the design by deep learning (DL) has attracted greater attention, since it is not essential to obtain their equivalent circuit parameters. Currently, a DL model for their higher‐precision design, especially with complicated spectral features, is still quite in demand. Here, a divide‐and‐conquer DL model based on a bidirectional artificial neural network is proposed. As proof‐of‐concept examples, the PSMs consisting of two metal/dielectric/metal/dielectric subwavelength stacks are adopted to demonstrate the validity of the paradigm. It demonstrates a significant prediction error reduction of 37.5% with the 47.8% decrease of training parameters than the conventional method in the forward network, which supports a powerful inverse design from spectra to PSM structures. Furthermore, a flexible tool based on the free customer definition, which facilitates the real‐time design of PSMs with various circuit‐analog functions, is developed. The fabrication and measurement experiments verify the design performance of the method. The study enhances the precision and convenience of on‐demand circuit‐analog PSMs and will provide a guide for fast high‐performance inverse design of many other metamaterials. A divide‐and‐conquer deep learning model, which boosts the photonic design precision with much fewer training parameters, is developed. A flexible and universal method is developed for a plasmonic stack metamaterial design customer to freely define the circuit‐analog properties of a target spectrum. The experimental results exhibit good agreement with the deep learning design.</description><identifier>ISSN: 1863-8880</identifier><identifier>EISSN: 1863-8899</identifier><identifier>DOI: 10.1002/lpor.202100738</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Analog circuits ; Artificial neural networks ; Circuit design ; Circuits ; Deep learning ; Demand ; Design optimization ; Equivalent circuits ; Error reduction ; Inverse design ; Mathematical models ; Metamaterials ; neural networks ; Parameters ; Plasmonics</subject><ispartof>Laser &amp; photonics reviews, 2023-03, Vol.17 (3), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-6d85fb318d7665592debc38f6d57a612577bfd9d6278f70e10be7568d9ab52d03</citedby><cites>FETCH-LOGICAL-c3178-6d85fb318d7665592debc38f6d57a612577bfd9d6278f70e10be7568d9ab52d03</cites><orcidid>0000-0003-3666-6763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Flpor.202100738$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Flpor.202100738$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiong, Jiankai</creatorcontrib><creatorcontrib>Shen, Jiaqing</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Chen, Yingshi</creatorcontrib><creatorcontrib>Ou, Jun‐Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><title>Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning</title><title>Laser &amp; photonics reviews</title><description>The design of plasmonic stack metamaterials (PSMs) is critical due to their promising potentials in the fields of optical absorbers, sensors, and thermal irradiation. Compared with the classical circuit‐based optimization, the design by deep learning (DL) has attracted greater attention, since it is not essential to obtain their equivalent circuit parameters. Currently, a DL model for their higher‐precision design, especially with complicated spectral features, is still quite in demand. Here, a divide‐and‐conquer DL model based on a bidirectional artificial neural network is proposed. As proof‐of‐concept examples, the PSMs consisting of two metal/dielectric/metal/dielectric subwavelength stacks are adopted to demonstrate the validity of the paradigm. It demonstrates a significant prediction error reduction of 37.5% with the 47.8% decrease of training parameters than the conventional method in the forward network, which supports a powerful inverse design from spectra to PSM structures. Furthermore, a flexible tool based on the free customer definition, which facilitates the real‐time design of PSMs with various circuit‐analog functions, is developed. The fabrication and measurement experiments verify the design performance of the method. The study enhances the precision and convenience of on‐demand circuit‐analog PSMs and will provide a guide for fast high‐performance inverse design of many other metamaterials. A divide‐and‐conquer deep learning model, which boosts the photonic design precision with much fewer training parameters, is developed. A flexible and universal method is developed for a plasmonic stack metamaterial design customer to freely define the circuit‐analog properties of a target spectrum. The experimental results exhibit good agreement with the deep learning design.</description><subject>Analog circuits</subject><subject>Artificial neural networks</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Deep learning</subject><subject>Demand</subject><subject>Design optimization</subject><subject>Equivalent circuits</subject><subject>Error reduction</subject><subject>Inverse design</subject><subject>Mathematical models</subject><subject>Metamaterials</subject><subject>neural networks</subject><subject>Parameters</subject><subject>Plasmonics</subject><issn>1863-8880</issn><issn>1863-8899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqWwMltibrET-SdjlfInBbUqZbac2KlcEjvYKdCNR-AZeRJcFZURD9f3yuc7uj4AXGI0xggl103n_DhBSRxYyo_AAHOajjjPsuNDz9EpOAthjRCJhw7Ax0LL5vvza2laDWc2dlPdSqvgVAezstDVMDe-2pg-Pk2sbNwKzhsZWmdNBZ96Wb3AR93LVvbaG9kEWG7h1LwZpSMQjWLNnX3daB8tdQcLLb01dnUOTuoo1xe_9xA8394s8_tRMbt7yCfFqEox4yOqOKnLFHPFKCUkS5Quq5TXVBEmKU4IY2WtMkUTxmuGNEalZoRylcmSJAqlQ3C19-28i1uEXqzdxsePBBERmmKUYRJV472q8i4Er2vRedNKvxUYiV26YpeuOKQbgWwPvJtGb_9Ri2I-W_yxP8I8g-s</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Xiong, Jiankai</creator><creator>Shen, Jiaqing</creator><creator>Gao, Yuan</creator><creator>Chen, Yingshi</creator><creator>Ou, Jun‐Yu</creator><creator>Liu, Qing Huo</creator><creator>Zhu, Jinfeng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid></search><sort><creationdate>202303</creationdate><title>Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning</title><author>Xiong, Jiankai ; Shen, Jiaqing ; Gao, Yuan ; Chen, Yingshi ; Ou, Jun‐Yu ; Liu, Qing Huo ; Zhu, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-6d85fb318d7665592debc38f6d57a612577bfd9d6278f70e10be7568d9ab52d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analog circuits</topic><topic>Artificial neural networks</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Deep learning</topic><topic>Demand</topic><topic>Design optimization</topic><topic>Equivalent circuits</topic><topic>Error reduction</topic><topic>Inverse design</topic><topic>Mathematical models</topic><topic>Metamaterials</topic><topic>neural networks</topic><topic>Parameters</topic><topic>Plasmonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiong, Jiankai</creatorcontrib><creatorcontrib>Shen, Jiaqing</creatorcontrib><creatorcontrib>Gao, Yuan</creatorcontrib><creatorcontrib>Chen, Yingshi</creatorcontrib><creatorcontrib>Ou, Jun‐Yu</creatorcontrib><creatorcontrib>Liu, Qing Huo</creatorcontrib><creatorcontrib>Zhu, Jinfeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Laser &amp; photonics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiong, Jiankai</au><au>Shen, Jiaqing</au><au>Gao, Yuan</au><au>Chen, Yingshi</au><au>Ou, Jun‐Yu</au><au>Liu, Qing Huo</au><au>Zhu, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning</atitle><jtitle>Laser &amp; photonics reviews</jtitle><date>2023-03</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><epage>n/a</epage><issn>1863-8880</issn><eissn>1863-8899</eissn><abstract>The design of plasmonic stack metamaterials (PSMs) is critical due to their promising potentials in the fields of optical absorbers, sensors, and thermal irradiation. Compared with the classical circuit‐based optimization, the design by deep learning (DL) has attracted greater attention, since it is not essential to obtain their equivalent circuit parameters. Currently, a DL model for their higher‐precision design, especially with complicated spectral features, is still quite in demand. Here, a divide‐and‐conquer DL model based on a bidirectional artificial neural network is proposed. As proof‐of‐concept examples, the PSMs consisting of two metal/dielectric/metal/dielectric subwavelength stacks are adopted to demonstrate the validity of the paradigm. It demonstrates a significant prediction error reduction of 37.5% with the 47.8% decrease of training parameters than the conventional method in the forward network, which supports a powerful inverse design from spectra to PSM structures. Furthermore, a flexible tool based on the free customer definition, which facilitates the real‐time design of PSMs with various circuit‐analog functions, is developed. The fabrication and measurement experiments verify the design performance of the method. The study enhances the precision and convenience of on‐demand circuit‐analog PSMs and will provide a guide for fast high‐performance inverse design of many other metamaterials. A divide‐and‐conquer deep learning model, which boosts the photonic design precision with much fewer training parameters, is developed. A flexible and universal method is developed for a plasmonic stack metamaterial design customer to freely define the circuit‐analog properties of a target spectrum. The experimental results exhibit good agreement with the deep learning design.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/lpor.202100738</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3666-6763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-8880
ispartof Laser & photonics reviews, 2023-03, Vol.17 (3), p.n/a
issn 1863-8880
1863-8899
language eng
recordid cdi_proquest_journals_2786310915
source Wiley Online Library All Journals
subjects Analog circuits
Artificial neural networks
Circuit design
Circuits
Deep learning
Demand
Design optimization
Equivalent circuits
Error reduction
Inverse design
Mathematical models
Metamaterials
neural networks
Parameters
Plasmonics
title Real‐Time On‐Demand Design of Circuit‐Analog Plasmonic Stack Metamaterials by Divide‐and‐Conquer Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90Time%20On%E2%80%90Demand%20Design%20of%20Circuit%E2%80%90Analog%20Plasmonic%20Stack%20Metamaterials%20by%20Divide%E2%80%90and%E2%80%90Conquer%20Deep%20Learning&rft.jtitle=Laser%20&%20photonics%20reviews&rft.au=Xiong,%20Jiankai&rft.date=2023-03&rft.volume=17&rft.issue=3&rft.epage=n/a&rft.issn=1863-8880&rft.eissn=1863-8899&rft_id=info:doi/10.1002/lpor.202100738&rft_dat=%3Cproquest_cross%3E2786310915%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786310915&rft_id=info:pmid/&rfr_iscdi=true