Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion

Brain–computer interface (BCI) technology based on electroencephalogram (EEG) has attracted widespread attention, among which interpretation, pattern recognition, and classification of brain activity through EEG are promising researches. However, EEG-based object classification is still confronted w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2023-04, Vol.17 (3), p.743-751
Hauptverfasser: Guo, Wenhui, Xu, Guixun, Wang, Yanjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 751
container_issue 3
container_start_page 743
container_title Signal, image and video processing
container_volume 17
creator Guo, Wenhui
Xu, Guixun
Wang, Yanjiang
description Brain–computer interface (BCI) technology based on electroencephalogram (EEG) has attracted widespread attention, among which interpretation, pattern recognition, and classification of brain activity through EEG are promising researches. However, EEG-based object classification is still confronted with enormous challenges in terms of the performance and interpretability of human brain signals. Accordingly, this paper constructs a novel hybrid dilation residual shrinkage network with Spatio-temporal feature fusion to research brain visual images classification. Inspired by visual attention and brain memory mechanisms, a hybrid dilation residual shrinkage module is designed to obtain the features of interest and reduce noise and redundant information. Then, EEG signals are encoded and stored in terms of the temporal and spatial dimensions, respectively. On the basis of the characteristics of the EEG signals, this work utilizes the gated recurrent unit network to generate temporal features and spatial features are obtained through a 2D hybrid dilation convolution module. Finally, the extracted spatio-temporal features are concatenated and then retrieved. Results indicate that the designed model is usable and effective. The proposed network achieves better classification performance compared with the existing methods.
doi_str_mv 10.1007/s11760-022-02282-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786132652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786132652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-d4a582f9e3f76b7d89caaa1ad297ef68c66da512b653bf0c95d03cc66edb160f3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5WJP2UodfMPBGr0Oajy1b186c1jH886ZW9M7AITmH5zmQF6FLSq4pIfIGKJWCZISxoQqWzU_QhBaCZ1RSevr7JvwczQA2JB3OZCGKCfq8izo0-CNAr2scdnrlMIRVkxpTa4Dgg9FdaAdE4_WxisFiG-pxFh0EO4iwjqHZDnLjukMbt_gQujWG_cBlndvt25gw73TXR4d9D0m_QGde1-BmP_cUvT3cvy6esuXL4_PidpkZJkmX2bnOC-ZLx70UlbRFabTWVFtWSudFYYSwOqesEjmvPDFlbgk3aepsRQXxfIquxr372L73Djq1afuYvghqSIFyJnKWKDZSJrYA0Xm1jymPeFSUqCFnNeasUsbqO2c1TxIfJUhws3Lxb_U_1hc95IOx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786132652</pqid></control><display><type>article</type><title>Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion</title><source>SpringerLink Journals</source><creator>Guo, Wenhui ; Xu, Guixun ; Wang, Yanjiang</creator><creatorcontrib>Guo, Wenhui ; Xu, Guixun ; Wang, Yanjiang</creatorcontrib><description>Brain–computer interface (BCI) technology based on electroencephalogram (EEG) has attracted widespread attention, among which interpretation, pattern recognition, and classification of brain activity through EEG are promising researches. However, EEG-based object classification is still confronted with enormous challenges in terms of the performance and interpretability of human brain signals. Accordingly, this paper constructs a novel hybrid dilation residual shrinkage network with Spatio-temporal feature fusion to research brain visual images classification. Inspired by visual attention and brain memory mechanisms, a hybrid dilation residual shrinkage module is designed to obtain the features of interest and reduce noise and redundant information. Then, EEG signals are encoded and stored in terms of the temporal and spatial dimensions, respectively. On the basis of the characteristics of the EEG signals, this work utilizes the gated recurrent unit network to generate temporal features and spatial features are obtained through a 2D hybrid dilation convolution module. Finally, the extracted spatio-temporal features are concatenated and then retrieved. Results indicate that the designed model is usable and effective. The proposed network achieves better classification performance compared with the existing methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-022-02282-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Classification ; Computer Imaging ; Computer Science ; Electroencephalography ; Feature extraction ; Human-computer interface ; Image classification ; Image Processing and Computer Vision ; Modules ; Multimedia Information Systems ; Noise reduction ; Original Paper ; Pattern recognition ; Pattern Recognition and Graphics ; Signal classification ; Signal,Image and Speech Processing ; Vision ; Visual signals</subject><ispartof>Signal, image and video processing, 2023-04, Vol.17 (3), p.743-751</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-d4a582f9e3f76b7d89caaa1ad297ef68c66da512b653bf0c95d03cc66edb160f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-022-02282-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-022-02282-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Guixun</creatorcontrib><creatorcontrib>Wang, Yanjiang</creatorcontrib><title>Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Brain–computer interface (BCI) technology based on electroencephalogram (EEG) has attracted widespread attention, among which interpretation, pattern recognition, and classification of brain activity through EEG are promising researches. However, EEG-based object classification is still confronted with enormous challenges in terms of the performance and interpretability of human brain signals. Accordingly, this paper constructs a novel hybrid dilation residual shrinkage network with Spatio-temporal feature fusion to research brain visual images classification. Inspired by visual attention and brain memory mechanisms, a hybrid dilation residual shrinkage module is designed to obtain the features of interest and reduce noise and redundant information. Then, EEG signals are encoded and stored in terms of the temporal and spatial dimensions, respectively. On the basis of the characteristics of the EEG signals, this work utilizes the gated recurrent unit network to generate temporal features and spatial features are obtained through a 2D hybrid dilation convolution module. Finally, the extracted spatio-temporal features are concatenated and then retrieved. Results indicate that the designed model is usable and effective. The proposed network achieves better classification performance compared with the existing methods.</description><subject>Classification</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Human-computer interface</subject><subject>Image classification</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal classification</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><subject>Visual signals</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOOb-gFcBr6v5WJP2UodfMPBGr0Oajy1b186c1jH886ZW9M7AITmH5zmQF6FLSq4pIfIGKJWCZISxoQqWzU_QhBaCZ1RSevr7JvwczQA2JB3OZCGKCfq8izo0-CNAr2scdnrlMIRVkxpTa4Dgg9FdaAdE4_WxisFiG-pxFh0EO4iwjqHZDnLjukMbt_gQujWG_cBlndvt25gw73TXR4d9D0m_QGde1-BmP_cUvT3cvy6esuXL4_PidpkZJkmX2bnOC-ZLx70UlbRFabTWVFtWSudFYYSwOqesEjmvPDFlbgk3aepsRQXxfIquxr372L73Djq1afuYvghqSIFyJnKWKDZSJrYA0Xm1jymPeFSUqCFnNeasUsbqO2c1TxIfJUhws3Lxb_U_1hc95IOx</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Guo, Wenhui</creator><creator>Xu, Guixun</creator><creator>Wang, Yanjiang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion</title><author>Guo, Wenhui ; Xu, Guixun ; Wang, Yanjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-d4a582f9e3f76b7d89caaa1ad297ef68c66da512b653bf0c95d03cc66edb160f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classification</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Human-computer interface</topic><topic>Image classification</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal classification</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><topic>Visual signals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Wenhui</creatorcontrib><creatorcontrib>Xu, Guixun</creatorcontrib><creatorcontrib>Wang, Yanjiang</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Wenhui</au><au>Xu, Guixun</au><au>Wang, Yanjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><spage>743</spage><epage>751</epage><pages>743-751</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Brain–computer interface (BCI) technology based on electroencephalogram (EEG) has attracted widespread attention, among which interpretation, pattern recognition, and classification of brain activity through EEG are promising researches. However, EEG-based object classification is still confronted with enormous challenges in terms of the performance and interpretability of human brain signals. Accordingly, this paper constructs a novel hybrid dilation residual shrinkage network with Spatio-temporal feature fusion to research brain visual images classification. Inspired by visual attention and brain memory mechanisms, a hybrid dilation residual shrinkage module is designed to obtain the features of interest and reduce noise and redundant information. Then, EEG signals are encoded and stored in terms of the temporal and spatial dimensions, respectively. On the basis of the characteristics of the EEG signals, this work utilizes the gated recurrent unit network to generate temporal features and spatial features are obtained through a 2D hybrid dilation convolution module. Finally, the extracted spatio-temporal features are concatenated and then retrieved. Results indicate that the designed model is usable and effective. The proposed network achieves better classification performance compared with the existing methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-022-02282-4</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2023-04, Vol.17 (3), p.743-751
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2786132652
source SpringerLink Journals
subjects Classification
Computer Imaging
Computer Science
Electroencephalography
Feature extraction
Human-computer interface
Image classification
Image Processing and Computer Vision
Modules
Multimedia Information Systems
Noise reduction
Original Paper
Pattern recognition
Pattern Recognition and Graphics
Signal classification
Signal,Image and Speech Processing
Vision
Visual signals
title Brain visual image signal classification via hybrid dilation residual shrinkage network with spatio-temporal feature fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20visual%20image%20signal%20classification%20via%20hybrid%20dilation%20residual%20shrinkage%20network%20with%20spatio-temporal%20feature%20fusion&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Guo,%20Wenhui&rft.date=2023-04-01&rft.volume=17&rft.issue=3&rft.spage=743&rft.epage=751&rft.pages=743-751&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-022-02282-4&rft_dat=%3Cproquest_cross%3E2786132652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786132652&rft_id=info:pmid/&rfr_iscdi=true