GECM: graph embedded convolution model for hand mesh reconstruction
Hand mesh reconstruction from a single RGB image is one of the popular research topic in human understanding field with applications such as virtual/augmented reality and robot operating system. To reconstruct a hand mesh with good quality, we propose a new mesh vertex feature aggregation network mo...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2023-04, Vol.17 (3), p.715-723 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 723 |
---|---|
container_issue | 3 |
container_start_page | 715 |
container_title | Signal, image and video processing |
container_volume | 17 |
creator | Li, Xuefeng Lin, Xiangbo Sun, Yi |
description | Hand mesh reconstruction from a single RGB image is one of the popular research topic in human understanding field with applications such as virtual/augmented reality and robot operating system. To reconstruct a hand mesh with good quality, we propose a new mesh vertex feature aggregation network module GEC. The current vertex’ features are generated by aggregating the features of the adjacent vertices according to the topological connections of the mesh vertices. Different from the traditional graph convolution structure, the GEC module circumvents the feature vectorization operation, but constructing the topological nodes with the full convolution operation. It has the advantages of avoiding destroying the spatial structure of feature maps and reducing the interference of features in the pseudo-neighborhood. Taking the GEC module as the core module, a new hand mesh reconstruction model GECM is presented. The FreiHAND dataset and the HO-3D dataset are used to evaluate the performance of the proposed GECM model. The experimental results indicate that the GECM model is superior to or on par with the state-of-the-art methods. |
doi_str_mv | 10.1007/s11760-022-02279-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786132564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786132564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-20b72103726a820f3c5d26fe2d4382f6101a31a0e8f3f8b30005d3ecf11da2553</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA59VMprtJvclSW6HiRc8h3ST9oLupya5gf71ZV_TmwDBzeN75eAm5BnYLjIm7CCAKljHO-xSz7HRGRiALzEAAnP_2DC_JJMY9S4FcyEKOSLmYl8_3dBP0cUttvbbGWEMr33z4Q9fufENrb-yBOh_oVjeG1jZuabCJiG3oqh65IhdOH6Kd_NQxeXucv5bLbPWyeCofVlmFMGszztaCA0PBCy05c1jlhhfOcjNFyV0BDDSCZlY6dHKN6crcoK0cgNE8z3FMboa5x-DfOxtbtfddaNJK1X8DyPNimig-UFXwMQbr1DHsah0-FTDV-6UGv1TySn37pU5JhIMoJrjZ2PA3-h_VF6wtbH8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786132564</pqid></control><display><type>article</type><title>GECM: graph embedded convolution model for hand mesh reconstruction</title><source>SpringerNature Journals</source><creator>Li, Xuefeng ; Lin, Xiangbo ; Sun, Yi</creator><creatorcontrib>Li, Xuefeng ; Lin, Xiangbo ; Sun, Yi</creatorcontrib><description>Hand mesh reconstruction from a single RGB image is one of the popular research topic in human understanding field with applications such as virtual/augmented reality and robot operating system. To reconstruct a hand mesh with good quality, we propose a new mesh vertex feature aggregation network module GEC. The current vertex’ features are generated by aggregating the features of the adjacent vertices according to the topological connections of the mesh vertices. Different from the traditional graph convolution structure, the GEC module circumvents the feature vectorization operation, but constructing the topological nodes with the full convolution operation. It has the advantages of avoiding destroying the spatial structure of feature maps and reducing the interference of features in the pseudo-neighborhood. Taking the GEC module as the core module, a new hand mesh reconstruction model GECM is presented. The FreiHAND dataset and the HO-3D dataset are used to evaluate the performance of the proposed GECM model. The experimental results indicate that the GECM model is superior to or on par with the state-of-the-art methods.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-022-02279-z</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Apexes ; Augmented reality ; Computer Imaging ; Computer Science ; Convolution ; Datasets ; Feature maps ; Finite element method ; Graph theory ; Image Processing and Computer Vision ; Image reconstruction ; Modules ; Multimedia Information Systems ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Topology ; Virtual reality ; Vision</subject><ispartof>Signal, image and video processing, 2023-04, Vol.17 (3), p.715-723</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-20b72103726a820f3c5d26fe2d4382f6101a31a0e8f3f8b30005d3ecf11da2553</citedby><cites>FETCH-LOGICAL-c319t-20b72103726a820f3c5d26fe2d4382f6101a31a0e8f3f8b30005d3ecf11da2553</cites><orcidid>0000-0001-7232-9479</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-022-02279-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-022-02279-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Xuefeng</creatorcontrib><creatorcontrib>Lin, Xiangbo</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><title>GECM: graph embedded convolution model for hand mesh reconstruction</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>Hand mesh reconstruction from a single RGB image is one of the popular research topic in human understanding field with applications such as virtual/augmented reality and robot operating system. To reconstruct a hand mesh with good quality, we propose a new mesh vertex feature aggregation network module GEC. The current vertex’ features are generated by aggregating the features of the adjacent vertices according to the topological connections of the mesh vertices. Different from the traditional graph convolution structure, the GEC module circumvents the feature vectorization operation, but constructing the topological nodes with the full convolution operation. It has the advantages of avoiding destroying the spatial structure of feature maps and reducing the interference of features in the pseudo-neighborhood. Taking the GEC module as the core module, a new hand mesh reconstruction model GECM is presented. The FreiHAND dataset and the HO-3D dataset are used to evaluate the performance of the proposed GECM model. The experimental results indicate that the GECM model is superior to or on par with the state-of-the-art methods.</description><subject>Apexes</subject><subject>Augmented reality</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Datasets</subject><subject>Feature maps</subject><subject>Finite element method</subject><subject>Graph theory</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Topology</subject><subject>Virtual reality</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA59VMprtJvclSW6HiRc8h3ST9oLupya5gf71ZV_TmwDBzeN75eAm5BnYLjIm7CCAKljHO-xSz7HRGRiALzEAAnP_2DC_JJMY9S4FcyEKOSLmYl8_3dBP0cUttvbbGWEMr33z4Q9fufENrb-yBOh_oVjeG1jZuabCJiG3oqh65IhdOH6Kd_NQxeXucv5bLbPWyeCofVlmFMGszztaCA0PBCy05c1jlhhfOcjNFyV0BDDSCZlY6dHKN6crcoK0cgNE8z3FMboa5x-DfOxtbtfddaNJK1X8DyPNimig-UFXwMQbr1DHsah0-FTDV-6UGv1TySn37pU5JhIMoJrjZ2PA3-h_VF6wtbH8</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Li, Xuefeng</creator><creator>Lin, Xiangbo</creator><creator>Sun, Yi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7232-9479</orcidid></search><sort><creationdate>20230401</creationdate><title>GECM: graph embedded convolution model for hand mesh reconstruction</title><author>Li, Xuefeng ; Lin, Xiangbo ; Sun, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-20b72103726a820f3c5d26fe2d4382f6101a31a0e8f3f8b30005d3ecf11da2553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Apexes</topic><topic>Augmented reality</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Datasets</topic><topic>Feature maps</topic><topic>Finite element method</topic><topic>Graph theory</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Topology</topic><topic>Virtual reality</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xuefeng</creatorcontrib><creatorcontrib>Lin, Xiangbo</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xuefeng</au><au>Lin, Xiangbo</au><au>Sun, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GECM: graph embedded convolution model for hand mesh reconstruction</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>17</volume><issue>3</issue><spage>715</spage><epage>723</epage><pages>715-723</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>Hand mesh reconstruction from a single RGB image is one of the popular research topic in human understanding field with applications such as virtual/augmented reality and robot operating system. To reconstruct a hand mesh with good quality, we propose a new mesh vertex feature aggregation network module GEC. The current vertex’ features are generated by aggregating the features of the adjacent vertices according to the topological connections of the mesh vertices. Different from the traditional graph convolution structure, the GEC module circumvents the feature vectorization operation, but constructing the topological nodes with the full convolution operation. It has the advantages of avoiding destroying the spatial structure of feature maps and reducing the interference of features in the pseudo-neighborhood. Taking the GEC module as the core module, a new hand mesh reconstruction model GECM is presented. The FreiHAND dataset and the HO-3D dataset are used to evaluate the performance of the proposed GECM model. The experimental results indicate that the GECM model is superior to or on par with the state-of-the-art methods.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-022-02279-z</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7232-9479</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2023-04, Vol.17 (3), p.715-723 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2786132564 |
source | SpringerNature Journals |
subjects | Apexes Augmented reality Computer Imaging Computer Science Convolution Datasets Feature maps Finite element method Graph theory Image Processing and Computer Vision Image reconstruction Modules Multimedia Information Systems Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Topology Virtual reality Vision |
title | GECM: graph embedded convolution model for hand mesh reconstruction |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A32%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GECM:%20graph%20embedded%20convolution%20model%20for%20hand%20mesh%20reconstruction&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Li,%20Xuefeng&rft.date=2023-04-01&rft.volume=17&rft.issue=3&rft.spage=715&rft.epage=723&rft.pages=715-723&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-022-02279-z&rft_dat=%3Cproquest_cross%3E2786132564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786132564&rft_id=info:pmid/&rfr_iscdi=true |