Unitals in Projective Planes of Order 25
In this paper, results of a non-exhaustive computer search for unitals in the known planes of order twenty-five are reported. The 2-(126, 6, 1) designs associated with newly found unitals are studied in detail. 938 non-isomorphic unital designs are discovered and we show that three of the unital des...
Gespeichert in:
Veröffentlicht in: | Mathematics in computer science 2023-03, Vol.17 (1), Article 5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Mathematics in computer science |
container_volume | 17 |
creator | Stoichev, Stoicho D. Gezek, Mustafa |
description | In this paper, results of a non-exhaustive computer search for unitals in the known planes of order twenty-five are reported. The 2-(126, 6, 1) designs associated with newly found unitals are studied in detail. 938 non-isomorphic unital designs are discovered and we show that three of the unital designs are embeddable in two non-isomorphic planes and 239 of them are resolvable. The findings of this study improve some well-known lower bounds on the number of such designs and provide new connections between some pairs of planes. A conjecture concerning the
p
-ranks of unital designs embedded in planes of order
q
2
is formulated. |
doi_str_mv | 10.1007/s11786-023-00556-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786132213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786132213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-361af142a1d22c004f8ffeb451120a85549085c3527bdc85ec1ee924320ac183</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4CngxUt0ZrLJZo9StAqF9lDPYZtNZEvdrclW8O2NrujN0wzM988wH2OXCDcIUN4mxNJoASQFgFJaVEdsglqjMGSq49--hFN2ltIWQBMWOGHXz1071LvE246vYr_1bmjfPV_t6s4n3ge-jI2PnNQ5OwmZ8xc_dcrWD_fr2aNYLOdPs7uFcBKrQUiNdcCCamyIHEARTAh-UyhEgtooVVRglJOKyk3jjPIOva-okHnq0MgpuxrX7mP_dvBpsNv-ELt80VL-ECURykzRSLnYpxR9sPvYvtbxwyLYLyF2FGKzEPstxFY5JMdQynD34uPf6n9Sn0wLYCU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786132213</pqid></control><display><type>article</type><title>Unitals in Projective Planes of Order 25</title><source>SpringerLink Journals - AutoHoldings</source><creator>Stoichev, Stoicho D. ; Gezek, Mustafa</creator><creatorcontrib>Stoichev, Stoicho D. ; Gezek, Mustafa</creatorcontrib><description>In this paper, results of a non-exhaustive computer search for unitals in the known planes of order twenty-five are reported. The 2-(126, 6, 1) designs associated with newly found unitals are studied in detail. 938 non-isomorphic unital designs are discovered and we show that three of the unital designs are embeddable in two non-isomorphic planes and 239 of them are resolvable. The findings of this study improve some well-known lower bounds on the number of such designs and provide new connections between some pairs of planes. A conjecture concerning the
p
-ranks of unital designs embedded in planes of order
q
2
is formulated.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-023-00556-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>ACA 2021 ; Computer Science ; Lower bounds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Mathematics in computer science, 2023-03, Vol.17 (1), Article 5</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-361af142a1d22c004f8ffeb451120a85549085c3527bdc85ec1ee924320ac183</citedby><cites>FETCH-LOGICAL-c319t-361af142a1d22c004f8ffeb451120a85549085c3527bdc85ec1ee924320ac183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-023-00556-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-023-00556-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Stoichev, Stoicho D.</creatorcontrib><creatorcontrib>Gezek, Mustafa</creatorcontrib><title>Unitals in Projective Planes of Order 25</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>In this paper, results of a non-exhaustive computer search for unitals in the known planes of order twenty-five are reported. The 2-(126, 6, 1) designs associated with newly found unitals are studied in detail. 938 non-isomorphic unital designs are discovered and we show that three of the unital designs are embeddable in two non-isomorphic planes and 239 of them are resolvable. The findings of this study improve some well-known lower bounds on the number of such designs and provide new connections between some pairs of planes. A conjecture concerning the
p
-ranks of unital designs embedded in planes of order
q
2
is formulated.</description><subject>ACA 2021</subject><subject>Computer Science</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4CngxUt0ZrLJZo9StAqF9lDPYZtNZEvdrclW8O2NrujN0wzM988wH2OXCDcIUN4mxNJoASQFgFJaVEdsglqjMGSq49--hFN2ltIWQBMWOGHXz1071LvE246vYr_1bmjfPV_t6s4n3ge-jI2PnNQ5OwmZ8xc_dcrWD_fr2aNYLOdPs7uFcBKrQUiNdcCCamyIHEARTAh-UyhEgtooVVRglJOKyk3jjPIOva-okHnq0MgpuxrX7mP_dvBpsNv-ELt80VL-ECURykzRSLnYpxR9sPvYvtbxwyLYLyF2FGKzEPstxFY5JMdQynD34uPf6n9Sn0wLYCU</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Stoichev, Stoicho D.</creator><creator>Gezek, Mustafa</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>Unitals in Projective Planes of Order 25</title><author>Stoichev, Stoicho D. ; Gezek, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-361af142a1d22c004f8ffeb451120a85549085c3527bdc85ec1ee924320ac183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ACA 2021</topic><topic>Computer Science</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoichev, Stoicho D.</creatorcontrib><creatorcontrib>Gezek, Mustafa</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoichev, Stoicho D.</au><au>Gezek, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unitals in Projective Planes of Order 25</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>17</volume><issue>1</issue><artnum>5</artnum><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>In this paper, results of a non-exhaustive computer search for unitals in the known planes of order twenty-five are reported. The 2-(126, 6, 1) designs associated with newly found unitals are studied in detail. 938 non-isomorphic unital designs are discovered and we show that three of the unital designs are embeddable in two non-isomorphic planes and 239 of them are resolvable. The findings of this study improve some well-known lower bounds on the number of such designs and provide new connections between some pairs of planes. A conjecture concerning the
p
-ranks of unital designs embedded in planes of order
q
2
is formulated.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-023-00556-9</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-8270 |
ispartof | Mathematics in computer science, 2023-03, Vol.17 (1), Article 5 |
issn | 1661-8270 1661-8289 |
language | eng |
recordid | cdi_proquest_journals_2786132213 |
source | SpringerLink Journals - AutoHoldings |
subjects | ACA 2021 Computer Science Lower bounds Mathematics Mathematics and Statistics |
title | Unitals in Projective Planes of Order 25 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unitals%20in%20Projective%20Planes%20of%20Order%2025&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Stoichev,%20Stoicho%20D.&rft.date=2023-03-01&rft.volume=17&rft.issue=1&rft.artnum=5&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-023-00556-9&rft_dat=%3Cproquest_cross%3E2786132213%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786132213&rft_id=info:pmid/&rfr_iscdi=true |