Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO

In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a
Hauptverfasser: Liu, Jun‐Wang, Li, Shi, Li, Mi, Zhou, Ying, Guo, Tao, Han, Zhong‐Xuan, Jiang, Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Propellants, explosives, pyrotechnics
container_volume 48
creator Liu, Jun‐Wang
Li, Shi
Li, Mi
Zhou, Ying
Guo, Tao
Han, Zhong‐Xuan
Jiang, Lin
description In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.
doi_str_mv 10.1002/prep.202200290
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2786061456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786061456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-ffd6be755c1d00069ecdec5851aa9be214eca8c4482790856c3fac96e5fc58763</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5WyJcxo_Yic5tqU8pFapUDkiy3U21FVaBycB8u9JAPW0O9K3o51B6JaSCSWEhZWHasIIY71IyRkaUcFoEJEkPkcjEvc7p1Rcoqu63hPSnxA6Qm-bHfiDLvH0qMuutjXWxxyvO-_KrrEGz2CnP63z2BV4Zg_Q9OhA3Lt2WwLOvm2ujw3-dbEN4GkZrt7Dlct4OG-za3RR6LKGm_85Rq8Pi838KVhmj8_z6TKoGOckKIpcbiEWwtC8f0umYHIwIhFU63QLjEZgdGKiKGFxShIhDS-0SSWIoqdiycfo7s-38u6jhbpRe9f6PlGtWJxIImkkBir9o75sCZ2qvD1o3ylK1NCfGvpTp_7U-mWxPin-A-rEZeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786061456</pqid></control><display><type>article</type><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</creator><creatorcontrib>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</creatorcontrib><description>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.202200290</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; Aluminum oxide ; Ball milling ; Bimetals ; Combustion ; Compound thermite Al1-xMgx/(MoO3)1-xCuOx ; Copper oxides ; Critical temperature ; Exothermic reactions ; Heat ; Magnesium base alloys ; Metal oxides ; Non-isothermal thermodynamics ; Oxidation ; Oxidizing agents ; Thermal analysis ; Thermal behavior</subject><ispartof>Propellants, explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0463-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprep.202200290$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprep.202200290$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Jun‐Wang</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Han, Zhong‐Xuan</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><title>Propellants, explosives, pyrotechnics</title><description>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Ball milling</subject><subject>Bimetals</subject><subject>Combustion</subject><subject>Compound thermite Al1-xMgx/(MoO3)1-xCuOx</subject><subject>Copper oxides</subject><subject>Critical temperature</subject><subject>Exothermic reactions</subject><subject>Heat</subject><subject>Magnesium base alloys</subject><subject>Metal oxides</subject><subject>Non-isothermal thermodynamics</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Thermal analysis</subject><subject>Thermal behavior</subject><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5WyJcxo_Yic5tqU8pFapUDkiy3U21FVaBycB8u9JAPW0O9K3o51B6JaSCSWEhZWHasIIY71IyRkaUcFoEJEkPkcjEvc7p1Rcoqu63hPSnxA6Qm-bHfiDLvH0qMuutjXWxxyvO-_KrrEGz2CnP63z2BV4Zg_Q9OhA3Lt2WwLOvm2ujw3-dbEN4GkZrt7Dlct4OG-za3RR6LKGm_85Rq8Pi838KVhmj8_z6TKoGOckKIpcbiEWwtC8f0umYHIwIhFU63QLjEZgdGKiKGFxShIhDS-0SSWIoqdiycfo7s-38u6jhbpRe9f6PlGtWJxIImkkBir9o75sCZ2qvD1o3ylK1NCfGvpTp_7U-mWxPin-A-rEZeI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Liu, Jun‐Wang</creator><creator>Li, Shi</creator><creator>Li, Mi</creator><creator>Zhou, Ying</creator><creator>Guo, Tao</creator><creator>Han, Zhong‐Xuan</creator><creator>Jiang, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid></search><sort><creationdate>202303</creationdate><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><author>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-ffd6be755c1d00069ecdec5851aa9be214eca8c4482790856c3fac96e5fc58763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Ball milling</topic><topic>Bimetals</topic><topic>Combustion</topic><topic>Compound thermite Al1-xMgx/(MoO3)1-xCuOx</topic><topic>Copper oxides</topic><topic>Critical temperature</topic><topic>Exothermic reactions</topic><topic>Heat</topic><topic>Magnesium base alloys</topic><topic>Metal oxides</topic><topic>Non-isothermal thermodynamics</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Thermal analysis</topic><topic>Thermal behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun‐Wang</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Han, Zhong‐Xuan</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun‐Wang</au><au>Li, Shi</au><au>Li, Mi</au><au>Zhou, Ying</au><au>Guo, Tao</au><au>Han, Zhong‐Xuan</au><au>Jiang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2023-03</date><risdate>2023</risdate><volume>48</volume><issue>3</issue><epage>n/a</epage><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prep.202200290</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0721-3115
ispartof Propellants, explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a
issn 0721-3115
1521-4087
language eng
recordid cdi_proquest_journals_2786061456
source Wiley Online Library Journals Frontfile Complete
subjects Activation energy
Aluminum oxide
Ball milling
Bimetals
Combustion
Compound thermite Al1-xMgx/(MoO3)1-xCuOx
Copper oxides
Critical temperature
Exothermic reactions
Heat
Magnesium base alloys
Metal oxides
Non-isothermal thermodynamics
Oxidation
Oxidizing agents
Thermal analysis
Thermal behavior
title Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20and%20Pyrolytic%20Behavior%20of%20Bimetal%20and%20Double%20Oxidant%20Thermite%20Al/Mg/MoO3/CuO&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Liu,%20Jun%E2%80%90Wang&rft.date=2023-03&rft.volume=48&rft.issue=3&rft.epage=n/a&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.202200290&rft_dat=%3Cproquest_wiley%3E2786061456%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786061456&rft_id=info:pmid/&rfr_iscdi=true