Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO
In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion...
Gespeichert in:
Veröffentlicht in: | Propellants, explosives, pyrotechnics explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Propellants, explosives, pyrotechnics |
container_volume | 48 |
creator | Liu, Jun‐Wang Li, Shi Li, Mi Zhou, Ying Guo, Tao Han, Zhong‐Xuan Jiang, Lin |
description | In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite. |
doi_str_mv | 10.1002/prep.202200290 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2786061456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786061456</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2330-ffd6be755c1d00069ecdec5851aa9be214eca8c4482790856c3fac96e5fc58763</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVw5WyJcxo_Yic5tqU8pFapUDkiy3U21FVaBycB8u9JAPW0O9K3o51B6JaSCSWEhZWHasIIY71IyRkaUcFoEJEkPkcjEvc7p1Rcoqu63hPSnxA6Qm-bHfiDLvH0qMuutjXWxxyvO-_KrrEGz2CnP63z2BV4Zg_Q9OhA3Lt2WwLOvm2ujw3-dbEN4GkZrt7Dlct4OG-za3RR6LKGm_85Rq8Pi838KVhmj8_z6TKoGOckKIpcbiEWwtC8f0umYHIwIhFU63QLjEZgdGKiKGFxShIhDS-0SSWIoqdiycfo7s-38u6jhbpRe9f6PlGtWJxIImkkBir9o75sCZ2qvD1o3ylK1NCfGvpTp_7U-mWxPin-A-rEZeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786061456</pqid></control><display><type>article</type><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</creator><creatorcontrib>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</creatorcontrib><description>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</description><identifier>ISSN: 0721-3115</identifier><identifier>EISSN: 1521-4087</identifier><identifier>DOI: 10.1002/prep.202200290</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Activation energy ; Aluminum oxide ; Ball milling ; Bimetals ; Combustion ; Compound thermite Al1-xMgx/(MoO3)1-xCuOx ; Copper oxides ; Critical temperature ; Exothermic reactions ; Heat ; Magnesium base alloys ; Metal oxides ; Non-isothermal thermodynamics ; Oxidation ; Oxidizing agents ; Thermal analysis ; Thermal behavior</subject><ispartof>Propellants, explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0463-3350</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprep.202200290$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprep.202200290$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Liu, Jun‐Wang</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Han, Zhong‐Xuan</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><title>Propellants, explosives, pyrotechnics</title><description>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</description><subject>Activation energy</subject><subject>Aluminum oxide</subject><subject>Ball milling</subject><subject>Bimetals</subject><subject>Combustion</subject><subject>Compound thermite Al1-xMgx/(MoO3)1-xCuOx</subject><subject>Copper oxides</subject><subject>Critical temperature</subject><subject>Exothermic reactions</subject><subject>Heat</subject><subject>Magnesium base alloys</subject><subject>Metal oxides</subject><subject>Non-isothermal thermodynamics</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Thermal analysis</subject><subject>Thermal behavior</subject><issn>0721-3115</issn><issn>1521-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPwzAQhC0EEqVw5WyJcxo_Yic5tqU8pFapUDkiy3U21FVaBycB8u9JAPW0O9K3o51B6JaSCSWEhZWHasIIY71IyRkaUcFoEJEkPkcjEvc7p1Rcoqu63hPSnxA6Qm-bHfiDLvH0qMuutjXWxxyvO-_KrrEGz2CnP63z2BV4Zg_Q9OhA3Lt2WwLOvm2ujw3-dbEN4GkZrt7Dlct4OG-za3RR6LKGm_85Rq8Pi838KVhmj8_z6TKoGOckKIpcbiEWwtC8f0umYHIwIhFU63QLjEZgdGKiKGFxShIhDS-0SSWIoqdiycfo7s-38u6jhbpRe9f6PlGtWJxIImkkBir9o75sCZ2qvD1o3ylK1NCfGvpTp_7U-mWxPin-A-rEZeI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Liu, Jun‐Wang</creator><creator>Li, Shi</creator><creator>Li, Mi</creator><creator>Zhou, Ying</creator><creator>Guo, Tao</creator><creator>Han, Zhong‐Xuan</creator><creator>Jiang, Lin</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid></search><sort><creationdate>202303</creationdate><title>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</title><author>Liu, Jun‐Wang ; Li, Shi ; Li, Mi ; Zhou, Ying ; Guo, Tao ; Han, Zhong‐Xuan ; Jiang, Lin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2330-ffd6be755c1d00069ecdec5851aa9be214eca8c4482790856c3fac96e5fc58763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Aluminum oxide</topic><topic>Ball milling</topic><topic>Bimetals</topic><topic>Combustion</topic><topic>Compound thermite Al1-xMgx/(MoO3)1-xCuOx</topic><topic>Copper oxides</topic><topic>Critical temperature</topic><topic>Exothermic reactions</topic><topic>Heat</topic><topic>Magnesium base alloys</topic><topic>Metal oxides</topic><topic>Non-isothermal thermodynamics</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Thermal analysis</topic><topic>Thermal behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jun‐Wang</creatorcontrib><creatorcontrib>Li, Shi</creatorcontrib><creatorcontrib>Li, Mi</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Guo, Tao</creatorcontrib><creatorcontrib>Han, Zhong‐Xuan</creatorcontrib><creatorcontrib>Jiang, Lin</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Propellants, explosives, pyrotechnics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jun‐Wang</au><au>Li, Shi</au><au>Li, Mi</au><au>Zhou, Ying</au><au>Guo, Tao</au><au>Han, Zhong‐Xuan</au><au>Jiang, Lin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO</atitle><jtitle>Propellants, explosives, pyrotechnics</jtitle><date>2023-03</date><risdate>2023</risdate><volume>48</volume><issue>3</issue><epage>n/a</epage><issn>0721-3115</issn><eissn>1521-4087</eissn><abstract>In order to study the effect of fuel Mg and metal oxide CuO on the reaction of thermite, different proportions of Al‐Mg alloys and MoO3‐CuO metal oxides were prepared by mechanical ball milling, and then the samples of Al1‐xMgx/(MoO3)1‐xCuOx composite thermite were prepared by ultrasonic dispersion method. The samples were characterized by SEM, TG‐DSC, and constant pressure combustion experiments. The results show that in quaternary thermite, adding CuO increases initial exothermic temperature, but increases exothermic heat in high‐temperature regions, and effectively reduces the activation energy of the thermite reaction. On the contrary, adding Mg reduces exothermic heat in the high‐temperature areas, but reduces initial exothermic temperature. After calculation, the quaternary thermite with the best exothermic performance is Al0.8Mg0.2/(MoO3)0.5CuO0.5. Its initial reaction temperature is only 614 °C, but the heat release is up to 2217 J/g. Its activation energy is only 106.7 kJ/mol, but the critical temperature of thermal explosion is up to 927.9 K. At the same time, Al0.8Mg0.2/(MoO3)0.5CuO0.5 has better combustion performance. During combustion, the flame is jet‐like, and the main products are Al2O3, Mo and Cu. This work provides a reference for studying the thermal safety and combustion performance of quaternary thermite.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/prep.202200290</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0463-3350</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0721-3115 |
ispartof | Propellants, explosives, pyrotechnics, 2023-03, Vol.48 (3), p.n/a |
issn | 0721-3115 1521-4087 |
language | eng |
recordid | cdi_proquest_journals_2786061456 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Activation energy Aluminum oxide Ball milling Bimetals Combustion Compound thermite Al1-xMgx/(MoO3)1-xCuOx Copper oxides Critical temperature Exothermic reactions Heat Magnesium base alloys Metal oxides Non-isothermal thermodynamics Oxidation Oxidizing agents Thermal analysis Thermal behavior |
title | Thermal Analysis and Pyrolytic Behavior of Bimetal and Double Oxidant Thermite Al/Mg/MoO3/CuO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Analysis%20and%20Pyrolytic%20Behavior%20of%20Bimetal%20and%20Double%20Oxidant%20Thermite%20Al/Mg/MoO3/CuO&rft.jtitle=Propellants,%20explosives,%20pyrotechnics&rft.au=Liu,%20Jun%E2%80%90Wang&rft.date=2023-03&rft.volume=48&rft.issue=3&rft.epage=n/a&rft.issn=0721-3115&rft.eissn=1521-4087&rft_id=info:doi/10.1002/prep.202200290&rft_dat=%3Cproquest_wiley%3E2786061456%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786061456&rft_id=info:pmid/&rfr_iscdi=true |