Weak and strong convergence of generalized proximal point algorithms with relaxed parameters
In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2023-04, Vol.85 (4), p.969-1002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1002 |
---|---|
container_issue | 4 |
container_start_page | 969 |
container_title | Journal of global optimization |
container_volume | 85 |
creator | Ouyang, Hui |
description | In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones. |
doi_str_mv | 10.1007/s10898-022-01241-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785985387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741035435</galeid><sourcerecordid>A741035435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-f5456a3d855a103500b3033a17026f4f3ebb80ae4fa2fd092fba55a0e122d6f3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-A54CnquTpNl2j4v4BYIXwYsQZttJ7dpt1qR-_vXOWsGb5DAhvF_mvSfEsYJTBVCcJQXlvMxA6wyUzlUGO2KibGEyPVezXTGBubaZBVD74iClFQDMS6sn4vGB8FliX8s0xNA3sgr9G8WG-opk8JIvFLFrv6iWmxg-2jV2chPafpDYNSG2w9M6yXceMlKHH1sZRlzTQDEdij2PXaKj3zkV95cX9-fX2e3d1c354jarjC2HzNvcztDUpbWowLDLpQFjUBWgZz73hpbLEpByj9rXnMQvkaVASut65s1UnIzfssGXV0qDW4XX2PNGp4vSclBTFqw6HVUNduTa3ochYsWnpnXLqcm3_L4o8q2F3FgG9AhUMaQUybtN5Pjx0ylw29bd2Lrj1t1P6w4YMiOUWNw3FP-8_EN9A5DUha4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785985387</pqid></control><display><type>article</type><title>Weak and strong convergence of generalized proximal point algorithms with relaxed parameters</title><source>SpringerLink Journals</source><creator>Ouyang, Hui</creator><creatorcontrib>Ouyang, Hui</creatorcontrib><description>In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-022-01241-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Science ; Convergence ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Parameters ; Real Functions ; Regularization ; Regularization methods ; Theorems</subject><ispartof>Journal of global optimization, 2023-04, Vol.85 (4), p.969-1002</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2023 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-f5456a3d855a103500b3033a17026f4f3ebb80ae4fa2fd092fba55a0e122d6f3</citedby><cites>FETCH-LOGICAL-c358t-f5456a3d855a103500b3033a17026f4f3ebb80ae4fa2fd092fba55a0e122d6f3</cites><orcidid>0000-0002-4239-9473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-022-01241-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-022-01241-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ouyang, Hui</creatorcontrib><title>Weak and strong convergence of generalized proximal point algorithms with relaxed parameters</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones.</description><subject>Algorithms</subject><subject>Computer Science</subject><subject>Convergence</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Real Functions</subject><subject>Regularization</subject><subject>Regularization methods</subject><subject>Theorems</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1LxDAQxYMouK7-A54CnquTpNl2j4v4BYIXwYsQZttJ7dpt1qR-_vXOWsGb5DAhvF_mvSfEsYJTBVCcJQXlvMxA6wyUzlUGO2KibGEyPVezXTGBubaZBVD74iClFQDMS6sn4vGB8FliX8s0xNA3sgr9G8WG-opk8JIvFLFrv6iWmxg-2jV2chPafpDYNSG2w9M6yXceMlKHH1sZRlzTQDEdij2PXaKj3zkV95cX9-fX2e3d1c354jarjC2HzNvcztDUpbWowLDLpQFjUBWgZz73hpbLEpByj9rXnMQvkaVASut65s1UnIzfssGXV0qDW4XX2PNGp4vSclBTFqw6HVUNduTa3ochYsWnpnXLqcm3_L4o8q2F3FgG9AhUMaQUybtN5Pjx0ylw29bd2Lrj1t1P6w4YMiOUWNw3FP-8_EN9A5DUha4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ouyang, Hui</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-4239-9473</orcidid></search><sort><creationdate>20230401</creationdate><title>Weak and strong convergence of generalized proximal point algorithms with relaxed parameters</title><author>Ouyang, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-f5456a3d855a103500b3033a17026f4f3ebb80ae4fa2fd092fba55a0e122d6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computer Science</topic><topic>Convergence</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Real Functions</topic><topic>Regularization</topic><topic>Regularization methods</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ouyang, Hui</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ouyang, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak and strong convergence of generalized proximal point algorithms with relaxed parameters</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>85</volume><issue>4</issue><spage>969</spage><epage>1002</epage><pages>969-1002</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-022-01241-0</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-4239-9473</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-5001 |
ispartof | Journal of global optimization, 2023-04, Vol.85 (4), p.969-1002 |
issn | 0925-5001 1573-2916 |
language | eng |
recordid | cdi_proquest_journals_2785985387 |
source | SpringerLink Journals |
subjects | Algorithms Computer Science Convergence Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Parameters Real Functions Regularization Regularization methods Theorems |
title | Weak and strong convergence of generalized proximal point algorithms with relaxed parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A41%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20and%20strong%20convergence%20of%20generalized%20proximal%20point%20algorithms%20with%20relaxed%20parameters&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Ouyang,%20Hui&rft.date=2023-04-01&rft.volume=85&rft.issue=4&rft.spage=969&rft.epage=1002&rft.pages=969-1002&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-022-01241-0&rft_dat=%3Cgale_proqu%3EA741035435%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785985387&rft_id=info:pmid/&rft_galeid=A741035435&rfr_iscdi=true |