Weak and strong convergence of generalized proximal point algorithms with relaxed parameters
In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of...
Gespeichert in:
Veröffentlicht in: | Journal of global optimization 2023-04, Vol.85 (4), p.969-1002 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones. |
---|---|
ISSN: | 0925-5001 1573-2916 |
DOI: | 10.1007/s10898-022-01241-0 |