Weak and strong convergence of generalized proximal point algorithms with relaxed parameters

In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2023-04, Vol.85 (4), p.969-1002
1. Verfasser: Ouyang, Hui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we propose and study a framework of generalized proximal point algorithms associated with a maximally monotone operator. We indicate sufficient conditions on the regularization and relaxation parameters of generalized proximal point algorithms for the equivalence of the boundedness of the sequence of iterations generated by this algorithm and the non-emptiness of the zero set of the maximally monotone operator, and for the weak and strong convergence of the algorithm. Our results cover or improve many results on generalized proximal point algorithms in our references. Improvements of our results are illustrated by comparing our results with related known ones.
ISSN:0925-5001
1573-2916
DOI:10.1007/s10898-022-01241-0