Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach

In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering with computers 2023-02, Vol.39 (1), p.857-866
Hauptverfasser: Phung-Van, P., Nguyen-Xuan, H., Thai, Chien H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 866
container_issue 1
container_start_page 857
container_title Engineering with computers
container_volume 39
creator Phung-Van, P.
Nguyen-Xuan, H.
Thai, Chien H.
description In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.
doi_str_mv 10.1007/s00366-022-01689-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785836498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785836498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgOvoyySSZpRRbhaIiupTwmsnUKdOkJtNF_97REdy5eptz7-UdQi45XHMAfZMBhFIMioIBV6Zi8ohMuBQlK5USx2QCXGsGSulTcpbzBoALgGpC3h9j6KLDjuY-YRvoOmHd-tBTDNgdcptpbOh8QRfPy5cZDRhiHmhPdx32PtMVZl_TGGib49rHre9T6yjudimi-zgnJw122V_83il5m9-9zu7Z8mnxMLtdMid41TNelE3ttFJGgGvQVNxhqb0uudJuVQrJUTkw0tcSVtLwujC-0MroWvoGVSOm5GrsHWY_9z73dhP3aXgg20Kb0gglKzNQxUi5FHNOvrG71G4xHSwH-63RjhrtoNH-aLRyCIkxlAc4rH36q_4n9QVV-3U0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785836498</pqid></control><display><type>article</type><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><source>SpringerNature Journals</source><creator>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</creator><creatorcontrib>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</creatorcontrib><description>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-022-01689-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Civil engineering ; Classical Mechanics ; Computational Modeling based on nonlocal theory ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Free vibration ; Functionally gradient materials ; Graphene ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Modulus of elasticity ; Nanocomposites ; Numerical analysis ; Original Paper ; Parameters ; Platelets (materials) ; Plates ; Poisson's ratio ; Polymers ; Resonant frequencies ; Shear deformation ; Strain analysis ; Systems Theory ; Vibration analysis</subject><ispartof>Engineering with computers, 2023-02, Vol.39 (1), p.857-866</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</citedby><cites>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-022-01689-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-022-01689-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Phung-Van, P.</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><creatorcontrib>Thai, Chien H.</creatorcontrib><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Civil engineering</subject><subject>Classical Mechanics</subject><subject>Computational Modeling based on nonlocal theory</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Free vibration</subject><subject>Functionally gradient materials</subject><subject>Graphene</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Numerical analysis</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Platelets (materials)</subject><subject>Plates</subject><subject>Poisson's ratio</subject><subject>Polymers</subject><subject>Resonant frequencies</subject><subject>Shear deformation</subject><subject>Strain analysis</subject><subject>Systems Theory</subject><subject>Vibration analysis</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4CrgOvoyySSZpRRbhaIiupTwmsnUKdOkJtNF_97REdy5eptz7-UdQi45XHMAfZMBhFIMioIBV6Zi8ohMuBQlK5USx2QCXGsGSulTcpbzBoALgGpC3h9j6KLDjuY-YRvoOmHd-tBTDNgdcptpbOh8QRfPy5cZDRhiHmhPdx32PtMVZl_TGGib49rHre9T6yjudimi-zgnJw122V_83il5m9-9zu7Z8mnxMLtdMid41TNelE3ttFJGgGvQVNxhqb0uudJuVQrJUTkw0tcSVtLwujC-0MroWvoGVSOm5GrsHWY_9z73dhP3aXgg20Kb0gglKzNQxUi5FHNOvrG71G4xHSwH-63RjhrtoNH-aLRyCIkxlAc4rH36q_4n9QVV-3U0</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Phung-Van, P.</creator><creator>Nguyen-Xuan, H.</creator><creator>Thai, Chien H.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230201</creationdate><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><author>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Civil engineering</topic><topic>Classical Mechanics</topic><topic>Computational Modeling based on nonlocal theory</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Free vibration</topic><topic>Functionally gradient materials</topic><topic>Graphene</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Numerical analysis</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Platelets (materials)</topic><topic>Plates</topic><topic>Poisson's ratio</topic><topic>Polymers</topic><topic>Resonant frequencies</topic><topic>Shear deformation</topic><topic>Strain analysis</topic><topic>Systems Theory</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung-Van, P.</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><creatorcontrib>Thai, Chien H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung-Van, P.</au><au>Nguyen-Xuan, H.</au><au>Thai, Chien H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>857</spage><epage>866</epage><pages>857-866</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-022-01689-4</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0177-0667
ispartof Engineering with computers, 2023-02, Vol.39 (1), p.857-866
issn 0177-0667
1435-5663
language eng
recordid cdi_proquest_journals_2785836498
source SpringerNature Journals
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Civil engineering
Classical Mechanics
Computational Modeling based on nonlocal theory
Computer Science
Computer-Aided Engineering (CAD
Control
Free vibration
Functionally gradient materials
Graphene
Math. Applications in Chemistry
Mathematical and Computational Engineering
Mathematical models
Modulus of elasticity
Nanocomposites
Numerical analysis
Original Paper
Parameters
Platelets (materials)
Plates
Poisson's ratio
Polymers
Resonant frequencies
Shear deformation
Strain analysis
Systems Theory
Vibration analysis
title Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20strain%20gradient%20analysis%20of%20FG%20GPLRC%20nanoscale%20plates%20based%20on%20isogeometric%20approach&rft.jtitle=Engineering%20with%20computers&rft.au=Phung-Van,%20P.&rft.date=2023-02-01&rft.volume=39&rft.issue=1&rft.spage=857&rft.epage=866&rft.pages=857-866&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-022-01689-4&rft_dat=%3Cproquest_cross%3E2785836498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785836498&rft_id=info:pmid/&rfr_iscdi=true