Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach
In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the...
Gespeichert in:
Veröffentlicht in: | Engineering with computers 2023-02, Vol.39 (1), p.857-866 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 866 |
---|---|
container_issue | 1 |
container_start_page | 857 |
container_title | Engineering with computers |
container_volume | 39 |
creator | Phung-Van, P. Nguyen-Xuan, H. Thai, Chien H. |
description | In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates. |
doi_str_mv | 10.1007/s00366-022-01689-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785836498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785836498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</originalsourceid><addsrcrecordid>eNp9kMFKAzEURYMoWKs_4CrgOvoyySSZpRRbhaIiupTwmsnUKdOkJtNF_97REdy5eptz7-UdQi45XHMAfZMBhFIMioIBV6Zi8ohMuBQlK5USx2QCXGsGSulTcpbzBoALgGpC3h9j6KLDjuY-YRvoOmHd-tBTDNgdcptpbOh8QRfPy5cZDRhiHmhPdx32PtMVZl_TGGib49rHre9T6yjudimi-zgnJw122V_83il5m9-9zu7Z8mnxMLtdMid41TNelE3ttFJGgGvQVNxhqb0uudJuVQrJUTkw0tcSVtLwujC-0MroWvoGVSOm5GrsHWY_9z73dhP3aXgg20Kb0gglKzNQxUi5FHNOvrG71G4xHSwH-63RjhrtoNH-aLRyCIkxlAc4rH36q_4n9QVV-3U0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785836498</pqid></control><display><type>article</type><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><source>SpringerNature Journals</source><creator>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</creator><creatorcontrib>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</creatorcontrib><description>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</description><identifier>ISSN: 0177-0667</identifier><identifier>EISSN: 1435-5663</identifier><identifier>DOI: 10.1007/s00366-022-01689-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Civil engineering ; Classical Mechanics ; Computational Modeling based on nonlocal theory ; Computer Science ; Computer-Aided Engineering (CAD ; Control ; Free vibration ; Functionally gradient materials ; Graphene ; Math. Applications in Chemistry ; Mathematical and Computational Engineering ; Mathematical models ; Modulus of elasticity ; Nanocomposites ; Numerical analysis ; Original Paper ; Parameters ; Platelets (materials) ; Plates ; Poisson's ratio ; Polymers ; Resonant frequencies ; Shear deformation ; Strain analysis ; Systems Theory ; Vibration analysis</subject><ispartof>Engineering with computers, 2023-02, Vol.39 (1), p.857-866</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</citedby><cites>FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00366-022-01689-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00366-022-01689-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Phung-Van, P.</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><creatorcontrib>Thai, Chien H.</creatorcontrib><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><title>Engineering with computers</title><addtitle>Engineering with Computers</addtitle><description>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Civil engineering</subject><subject>Classical Mechanics</subject><subject>Computational Modeling based on nonlocal theory</subject><subject>Computer Science</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Free vibration</subject><subject>Functionally gradient materials</subject><subject>Graphene</subject><subject>Math. Applications in Chemistry</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical models</subject><subject>Modulus of elasticity</subject><subject>Nanocomposites</subject><subject>Numerical analysis</subject><subject>Original Paper</subject><subject>Parameters</subject><subject>Platelets (materials)</subject><subject>Plates</subject><subject>Poisson's ratio</subject><subject>Polymers</subject><subject>Resonant frequencies</subject><subject>Shear deformation</subject><subject>Strain analysis</subject><subject>Systems Theory</subject><subject>Vibration analysis</subject><issn>0177-0667</issn><issn>1435-5663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMFKAzEURYMoWKs_4CrgOvoyySSZpRRbhaIiupTwmsnUKdOkJtNF_97REdy5eptz7-UdQi45XHMAfZMBhFIMioIBV6Zi8ohMuBQlK5USx2QCXGsGSulTcpbzBoALgGpC3h9j6KLDjuY-YRvoOmHd-tBTDNgdcptpbOh8QRfPy5cZDRhiHmhPdx32PtMVZl_TGGib49rHre9T6yjudimi-zgnJw122V_83il5m9-9zu7Z8mnxMLtdMid41TNelE3ttFJGgGvQVNxhqb0uudJuVQrJUTkw0tcSVtLwujC-0MroWvoGVSOm5GrsHWY_9z73dhP3aXgg20Kb0gglKzNQxUi5FHNOvrG71G4xHSwH-63RjhrtoNH-aLRyCIkxlAc4rH36q_4n9QVV-3U0</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Phung-Van, P.</creator><creator>Nguyen-Xuan, H.</creator><creator>Thai, Chien H.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20230201</creationdate><title>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</title><author>Phung-Van, P. ; Nguyen-Xuan, H. ; Thai, Chien H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-125fdc766830cfa891ca57e75167cb5341a6c084ed40b481d28e27687d4efa6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Civil engineering</topic><topic>Classical Mechanics</topic><topic>Computational Modeling based on nonlocal theory</topic><topic>Computer Science</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Free vibration</topic><topic>Functionally gradient materials</topic><topic>Graphene</topic><topic>Math. Applications in Chemistry</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical models</topic><topic>Modulus of elasticity</topic><topic>Nanocomposites</topic><topic>Numerical analysis</topic><topic>Original Paper</topic><topic>Parameters</topic><topic>Platelets (materials)</topic><topic>Plates</topic><topic>Poisson's ratio</topic><topic>Polymers</topic><topic>Resonant frequencies</topic><topic>Shear deformation</topic><topic>Strain analysis</topic><topic>Systems Theory</topic><topic>Vibration analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Phung-Van, P.</creatorcontrib><creatorcontrib>Nguyen-Xuan, H.</creatorcontrib><creatorcontrib>Thai, Chien H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Engineering with computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Phung-Van, P.</au><au>Nguyen-Xuan, H.</au><au>Thai, Chien H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach</atitle><jtitle>Engineering with computers</jtitle><stitle>Engineering with Computers</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>39</volume><issue>1</issue><spage>857</spage><epage>866</epage><pages>857-866</pages><issn>0177-0667</issn><eissn>1435-5663</eissn><abstract>In this paper, a nonlocal strain gradient isogeometric model based on the higher order shear deformation theory for free vibration analysis of functionally graded graphene platelet-reinforced composites (FG GPLRC) plates is performed. Various distributed patterns of graphene platelets (GPLs) in the polymer matrix including uniform and non-uniform are considered. To capture size dependence of nanostructures, the nonlocal strain gradient theory including both nonlocal and strain gradient effects is used. Based on the modified Halpin–Tsai model, the effective Young’s modulus of the nanocomposites is expressed, while the Poisson’s ratio and density are established using the rule of mixtures. Natural frequencies of FG GPLRC nanoplates is determined using isogeometric analysis. The effects played by strain gradient parameter, distributions of GPLs, thickness-to-length ratio, and nonlocal parameter are examined, and results illustrate the interesting dynamic phenomenon. Several results are investigated and considered as benchmark results for further studies on the FG GPLRC nanoplates.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00366-022-01689-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0177-0667 |
ispartof | Engineering with computers, 2023-02, Vol.39 (1), p.857-866 |
issn | 0177-0667 1435-5663 |
language | eng |
recordid | cdi_proquest_journals_2785836498 |
source | SpringerNature Journals |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Civil engineering Classical Mechanics Computational Modeling based on nonlocal theory Computer Science Computer-Aided Engineering (CAD Control Free vibration Functionally gradient materials Graphene Math. Applications in Chemistry Mathematical and Computational Engineering Mathematical models Modulus of elasticity Nanocomposites Numerical analysis Original Paper Parameters Platelets (materials) Plates Poisson's ratio Polymers Resonant frequencies Shear deformation Strain analysis Systems Theory Vibration analysis |
title | Nonlocal strain gradient analysis of FG GPLRC nanoscale plates based on isogeometric approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlocal%20strain%20gradient%20analysis%20of%20FG%20GPLRC%20nanoscale%20plates%20based%20on%20isogeometric%20approach&rft.jtitle=Engineering%20with%20computers&rft.au=Phung-Van,%20P.&rft.date=2023-02-01&rft.volume=39&rft.issue=1&rft.spage=857&rft.epage=866&rft.pages=857-866&rft.issn=0177-0667&rft.eissn=1435-5663&rft_id=info:doi/10.1007/s00366-022-01689-4&rft_dat=%3Cproquest_cross%3E2785836498%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785836498&rft_id=info:pmid/&rfr_iscdi=true |