de Broglie Normal Modes in the Madelung Fluid
In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenst...
Gespeichert in:
Veröffentlicht in: | Foundations of physics 2023-04, Vol.53 (2), Article 35 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Foundations of physics |
container_volume | 53 |
creator | Heifetz, Eyal Guha, Anirban Maas, Leo |
description | In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results. |
doi_str_mv | 10.1007/s10701-023-00676-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785663837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785663837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5gsMRuu7fqRESoKSC0sMFuOHyFVmhQ7GeivJxAkNqa7nPNd6SB0SeGaAqibTEEBJcA4AZBKksMRmlGhGCkElcdoBkAFKYDqU3SW8xYACiUXM0R8wHepq5o64Ocu7WyDN50PGdct7t8D3lgfmqGt8KoZan-OTqJtcrj4vXP0trp_XT6S9cvD0_J2TRyXvCeaWam5oForDoVlzJZOaRuZjyB9dKXilivpS1hoKIUOwIBFXzgZqQVwfI6upt196j6GkHuz7YbUji8NU1pIyTVXI8UmyqUu5xSi2ad6Z9OnoWC-s5gpixmzmJ8s5jBKfJLyCLdVSH_T_1hfpNBjiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785663837</pqid></control><display><type>article</type><title>de Broglie Normal Modes in the Madelung Fluid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</creator><creatorcontrib>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</creatorcontrib><description>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-023-00676-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Eigenvectors ; Group velocity ; History and Philosophical Foundations of Physics ; Matter waves ; Perturbation ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Sound propagation ; Sound waves ; Statistical Physics and Dynamical Systems ; Wave propagation</subject><ispartof>Foundations of physics, 2023-04, Vol.53 (2), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</citedby><cites>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</cites><orcidid>0000-0002-3584-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10701-023-00676-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10701-023-00676-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Heifetz, Eyal</creatorcontrib><creatorcontrib>Guha, Anirban</creatorcontrib><creatorcontrib>Maas, Leo</creatorcontrib><title>de Broglie Normal Modes in the Madelung Fluid</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Eigenvectors</subject><subject>Group velocity</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Matter waves</subject><subject>Perturbation</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Sound propagation</subject><subject>Sound waves</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Wave propagation</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwB5gsMRuu7fqRESoKSC0sMFuOHyFVmhQ7GeivJxAkNqa7nPNd6SB0SeGaAqibTEEBJcA4AZBKksMRmlGhGCkElcdoBkAFKYDqU3SW8xYACiUXM0R8wHepq5o64Ocu7WyDN50PGdct7t8D3lgfmqGt8KoZan-OTqJtcrj4vXP0trp_XT6S9cvD0_J2TRyXvCeaWam5oForDoVlzJZOaRuZjyB9dKXilivpS1hoKIUOwIBFXzgZqQVwfI6upt196j6GkHuz7YbUji8NU1pIyTVXI8UmyqUu5xSi2ad6Z9OnoWC-s5gpixmzmJ8s5jBKfJLyCLdVSH_T_1hfpNBjiw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Heifetz, Eyal</creator><creator>Guha, Anirban</creator><creator>Maas, Leo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3584-3978</orcidid></search><sort><creationdate>20230401</creationdate><title>de Broglie Normal Modes in the Madelung Fluid</title><author>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Eigenvectors</topic><topic>Group velocity</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Matter waves</topic><topic>Perturbation</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Sound propagation</topic><topic>Sound waves</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heifetz, Eyal</creatorcontrib><creatorcontrib>Guha, Anirban</creatorcontrib><creatorcontrib>Maas, Leo</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heifetz, Eyal</au><au>Guha, Anirban</au><au>Maas, Leo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>de Broglie Normal Modes in the Madelung Fluid</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>53</volume><issue>2</issue><artnum>35</artnum><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-023-00676-z</doi><orcidid>https://orcid.org/0000-0002-3584-3978</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-9018 |
ispartof | Foundations of physics, 2023-04, Vol.53 (2), Article 35 |
issn | 0015-9018 1572-9516 |
language | eng |
recordid | cdi_proquest_journals_2785663837 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Quantum Gravitation Classical Mechanics Eigenvectors Group velocity History and Philosophical Foundations of Physics Matter waves Perturbation Philosophy of Science Physics Physics and Astronomy Quantum mechanics Quantum Physics Relativity Theory Schrodinger equation Sound propagation Sound waves Statistical Physics and Dynamical Systems Wave propagation |
title | de Broglie Normal Modes in the Madelung Fluid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=de%20Broglie%20Normal%20Modes%20in%20the%20Madelung%20Fluid&rft.jtitle=Foundations%20of%20physics&rft.au=Heifetz,%20Eyal&rft.date=2023-04-01&rft.volume=53&rft.issue=2&rft.artnum=35&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-023-00676-z&rft_dat=%3Cproquest_cross%3E2785663837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785663837&rft_id=info:pmid/&rfr_iscdi=true |