de Broglie Normal Modes in the Madelung Fluid

In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of physics 2023-04, Vol.53 (2), Article 35
Hauptverfasser: Heifetz, Eyal, Guha, Anirban, Maas, Leo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Foundations of physics
container_volume 53
creator Heifetz, Eyal
Guha, Anirban
Maas, Leo
description In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.
doi_str_mv 10.1007/s10701-023-00676-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785663837</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785663837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</originalsourceid><addsrcrecordid>eNp9kDtPwzAURi0EEqXwB5gsMRuu7fqRESoKSC0sMFuOHyFVmhQ7GeivJxAkNqa7nPNd6SB0SeGaAqibTEEBJcA4AZBKksMRmlGhGCkElcdoBkAFKYDqU3SW8xYACiUXM0R8wHepq5o64Ocu7WyDN50PGdct7t8D3lgfmqGt8KoZan-OTqJtcrj4vXP0trp_XT6S9cvD0_J2TRyXvCeaWam5oForDoVlzJZOaRuZjyB9dKXilivpS1hoKIUOwIBFXzgZqQVwfI6upt196j6GkHuz7YbUji8NU1pIyTVXI8UmyqUu5xSi2ad6Z9OnoWC-s5gpixmzmJ8s5jBKfJLyCLdVSH_T_1hfpNBjiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785663837</pqid></control><display><type>article</type><title>de Broglie Normal Modes in the Madelung Fluid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</creator><creatorcontrib>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</creatorcontrib><description>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</description><identifier>ISSN: 0015-9018</identifier><identifier>EISSN: 1572-9516</identifier><identifier>DOI: 10.1007/s10701-023-00676-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classical and Quantum Gravitation ; Classical Mechanics ; Eigenvectors ; Group velocity ; History and Philosophical Foundations of Physics ; Matter waves ; Perturbation ; Philosophy of Science ; Physics ; Physics and Astronomy ; Quantum mechanics ; Quantum Physics ; Relativity Theory ; Schrodinger equation ; Sound propagation ; Sound waves ; Statistical Physics and Dynamical Systems ; Wave propagation</subject><ispartof>Foundations of physics, 2023-04, Vol.53 (2), Article 35</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</citedby><cites>FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</cites><orcidid>0000-0002-3584-3978</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10701-023-00676-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10701-023-00676-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Heifetz, Eyal</creatorcontrib><creatorcontrib>Guha, Anirban</creatorcontrib><creatorcontrib>Maas, Leo</creatorcontrib><title>de Broglie Normal Modes in the Madelung Fluid</title><title>Foundations of physics</title><addtitle>Found Phys</addtitle><description>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</description><subject>Classical and Quantum Gravitation</subject><subject>Classical Mechanics</subject><subject>Eigenvectors</subject><subject>Group velocity</subject><subject>History and Philosophical Foundations of Physics</subject><subject>Matter waves</subject><subject>Perturbation</subject><subject>Philosophy of Science</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum mechanics</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Schrodinger equation</subject><subject>Sound propagation</subject><subject>Sound waves</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Wave propagation</subject><issn>0015-9018</issn><issn>1572-9516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAURi0EEqXwB5gsMRuu7fqRESoKSC0sMFuOHyFVmhQ7GeivJxAkNqa7nPNd6SB0SeGaAqibTEEBJcA4AZBKksMRmlGhGCkElcdoBkAFKYDqU3SW8xYACiUXM0R8wHepq5o64Ocu7WyDN50PGdct7t8D3lgfmqGt8KoZan-OTqJtcrj4vXP0trp_XT6S9cvD0_J2TRyXvCeaWam5oForDoVlzJZOaRuZjyB9dKXilivpS1hoKIUOwIBFXzgZqQVwfI6upt196j6GkHuz7YbUji8NU1pIyTVXI8UmyqUu5xSi2ad6Z9OnoWC-s5gpixmzmJ8s5jBKfJLyCLdVSH_T_1hfpNBjiw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Heifetz, Eyal</creator><creator>Guha, Anirban</creator><creator>Maas, Leo</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3584-3978</orcidid></search><sort><creationdate>20230401</creationdate><title>de Broglie Normal Modes in the Madelung Fluid</title><author>Heifetz, Eyal ; Guha, Anirban ; Maas, Leo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-82a68351887309a22abc78af2df06dfcb73a376db0480b58e0202fd9c6f1a00c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Classical Mechanics</topic><topic>Eigenvectors</topic><topic>Group velocity</topic><topic>History and Philosophical Foundations of Physics</topic><topic>Matter waves</topic><topic>Perturbation</topic><topic>Philosophy of Science</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum mechanics</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Schrodinger equation</topic><topic>Sound propagation</topic><topic>Sound waves</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heifetz, Eyal</creatorcontrib><creatorcontrib>Guha, Anirban</creatorcontrib><creatorcontrib>Maas, Leo</creatorcontrib><collection>CrossRef</collection><jtitle>Foundations of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heifetz, Eyal</au><au>Guha, Anirban</au><au>Maas, Leo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>de Broglie Normal Modes in the Madelung Fluid</atitle><jtitle>Foundations of physics</jtitle><stitle>Found Phys</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>53</volume><issue>2</issue><artnum>35</artnum><issn>0015-9018</issn><eissn>1572-9516</eissn><abstract>In an attempt to explore further the Madelung fluid-like representation of quantum mechanics, we derive the small perturbation equations of the fluid with respect to its basic states. The latter are obtained from the Madelung transform of the Schrödinger equation eigenstates. The fundamental eigenstates of de Broglie monochromatic matter waves are then shown to be mapped into the simple basic states of a fluid with constant density and velocity, where the latter is the de Broglie group velocity. The normal modes with respect to these basic states are derived and found to also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their propagation mechanism is equivalent to that of sound waves in a classical ideal adiabatic gas. We discuss the physical interpretation of these results.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10701-023-00676-z</doi><orcidid>https://orcid.org/0000-0002-3584-3978</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0015-9018
ispartof Foundations of physics, 2023-04, Vol.53 (2), Article 35
issn 0015-9018
1572-9516
language eng
recordid cdi_proquest_journals_2785663837
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Classical Mechanics
Eigenvectors
Group velocity
History and Philosophical Foundations of Physics
Matter waves
Perturbation
Philosophy of Science
Physics
Physics and Astronomy
Quantum mechanics
Quantum Physics
Relativity Theory
Schrodinger equation
Sound propagation
Sound waves
Statistical Physics and Dynamical Systems
Wave propagation
title de Broglie Normal Modes in the Madelung Fluid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A06%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=de%20Broglie%20Normal%20Modes%20in%20the%20Madelung%20Fluid&rft.jtitle=Foundations%20of%20physics&rft.au=Heifetz,%20Eyal&rft.date=2023-04-01&rft.volume=53&rft.issue=2&rft.artnum=35&rft.issn=0015-9018&rft.eissn=1572-9516&rft_id=info:doi/10.1007/s10701-023-00676-z&rft_dat=%3Cproquest_cross%3E2785663837%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785663837&rft_id=info:pmid/&rfr_iscdi=true