Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model
In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated ba...
Gespeichert in:
Veröffentlicht in: | Advances in materials science 2023-03, Vol.23 (1), p.32-57 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 57 |
---|---|
container_issue | 1 |
container_start_page | 32 |
container_title | Advances in materials science |
container_volume | 23 |
creator | Layachi, Maroua Khechai, Abdelhak Ghrieb, Abderrahmane Layachi, Safa |
description | In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams. |
doi_str_mv | 10.2478/adms-2023-0003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785483883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785483883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-15fb8bdc0f75031c0daa4b85bdd6ec0927fb4155ddd9757979ce134f082104193</originalsourceid><addsrcrecordid>eNptkM1LAzEQxYMoWKtXzwHPW_Ox2yR4qqVVoSoUew7ZzaSk7EdNdpH9792lgh48DPMY3nsMP4RuKZmxVMh7Y6uYMMJ4QgjhZ2jCiORJKpQ6_6Mv0VWMB0LmnAk-Qdu3roLgC1PitfFlFwAvalP20UfcOLwxla9NCxY_gqki3kVf77HBW3C-Hq5rX_sW8KqECuoWvzYWymt04UwZ4eZnT9FuvfpYPieb96eX5WKTFEyqNqGZy2VuC-JERjgtiDUmzWWWWzuHgigmXJ7SLLPWKpEJJVQBlKeOSEZJShWfortT7zE0nx3EVh-aLgzPR82EzFLJpeSDa3ZyFaGJMYDTx-ArE3pNiR656ZGbHrnpkdsQeDgFvkzZQrCwD10_iN_2_4OM02G-Afxbc7M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785483883</pqid></control><display><type>article</type><title>Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model</title><source>De Gruyter Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Layachi, Maroua ; Khechai, Abdelhak ; Ghrieb, Abderrahmane ; Layachi, Safa</creator><creatorcontrib>Layachi, Maroua ; Khechai, Abdelhak ; Ghrieb, Abderrahmane ; Layachi, Safa</creatorcontrib><description>In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.</description><identifier>ISSN: 2083-4799</identifier><identifier>ISSN: 1730-2439</identifier><identifier>EISSN: 2083-4799</identifier><identifier>DOI: 10.2478/adms-2023-0003</identifier><language>eng</language><publisher>Gdansk: Sciendo</publisher><subject>beam ; bending ; Boundary conditions ; Composite beams ; composite materials ; failure ; Failure analysis ; Failure mechanisms ; Fiber orientation ; finite element ; Finite element method ; Laminar composites ; Rectangular plates ; Sequences</subject><ispartof>Advances in materials science, 2023-03, Vol.23 (1), p.32-57</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-nc-nd/3.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-15fb8bdc0f75031c0daa4b85bdd6ec0927fb4155ddd9757979ce134f082104193</citedby><cites>FETCH-LOGICAL-c289t-15fb8bdc0f75031c0daa4b85bdd6ec0927fb4155ddd9757979ce134f082104193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://sciendo.com/pdf/10.2478/adms-2023-0003$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://sciendo.com/article/10.2478/adms-2023-0003$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,75910,75911</link.rule.ids></links><search><creatorcontrib>Layachi, Maroua</creatorcontrib><creatorcontrib>Khechai, Abdelhak</creatorcontrib><creatorcontrib>Ghrieb, Abderrahmane</creatorcontrib><creatorcontrib>Layachi, Safa</creatorcontrib><title>Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model</title><title>Advances in materials science</title><description>In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.</description><subject>beam</subject><subject>bending</subject><subject>Boundary conditions</subject><subject>Composite beams</subject><subject>composite materials</subject><subject>failure</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Fiber orientation</subject><subject>finite element</subject><subject>Finite element method</subject><subject>Laminar composites</subject><subject>Rectangular plates</subject><subject>Sequences</subject><issn>2083-4799</issn><issn>1730-2439</issn><issn>2083-4799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptkM1LAzEQxYMoWKtXzwHPW_Ox2yR4qqVVoSoUew7ZzaSk7EdNdpH9792lgh48DPMY3nsMP4RuKZmxVMh7Y6uYMMJ4QgjhZ2jCiORJKpQ6_6Mv0VWMB0LmnAk-Qdu3roLgC1PitfFlFwAvalP20UfcOLwxla9NCxY_gqki3kVf77HBW3C-Hq5rX_sW8KqECuoWvzYWymt04UwZ4eZnT9FuvfpYPieb96eX5WKTFEyqNqGZy2VuC-JERjgtiDUmzWWWWzuHgigmXJ7SLLPWKpEJJVQBlKeOSEZJShWfortT7zE0nx3EVh-aLgzPR82EzFLJpeSDa3ZyFaGJMYDTx-ArE3pNiR656ZGbHrnpkdsQeDgFvkzZQrCwD10_iN_2_4OM02G-Afxbc7M</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Layachi, Maroua</creator><creator>Khechai, Abdelhak</creator><creator>Ghrieb, Abderrahmane</creator><creator>Layachi, Safa</creator><general>Sciendo</general><general>De Gruyter Poland</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model</title><author>Layachi, Maroua ; Khechai, Abdelhak ; Ghrieb, Abderrahmane ; Layachi, Safa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-15fb8bdc0f75031c0daa4b85bdd6ec0927fb4155ddd9757979ce134f082104193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>beam</topic><topic>bending</topic><topic>Boundary conditions</topic><topic>Composite beams</topic><topic>composite materials</topic><topic>failure</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Fiber orientation</topic><topic>finite element</topic><topic>Finite element method</topic><topic>Laminar composites</topic><topic>Rectangular plates</topic><topic>Sequences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Layachi, Maroua</creatorcontrib><creatorcontrib>Khechai, Abdelhak</creatorcontrib><creatorcontrib>Ghrieb, Abderrahmane</creatorcontrib><creatorcontrib>Layachi, Safa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Advances in materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Layachi, Maroua</au><au>Khechai, Abdelhak</au><au>Ghrieb, Abderrahmane</au><au>Layachi, Safa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model</atitle><jtitle>Advances in materials science</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>23</volume><issue>1</issue><spage>32</spage><epage>57</epage><pages>32-57</pages><issn>2083-4799</issn><issn>1730-2439</issn><eissn>2083-4799</eissn><abstract>In the present investigation, laminated composite beams subjected to a bending static loading are studied in order to determine their failure mechanisms and the first ply failure (FPF) load. The FPF analysis is performed using a refined rectangular plate element. The present element is formulated based on the classical lamination theory (CLT) to calculate the in-plane stresses. To achieve this goal, several failure criterions, including Tsai-Wu, Tsai-Hill, Hashin, and Maximum Stress criteria, are used to predict failure mechanisms. These criterions are implemented within the finite element code to predict the different failure damages and responses of laminated beams from the initial loading to the final failure. The numerical results obtained using the present element compare favorably with those given by the analytic approaches. It is observed that the numerical results are very close to the analytical results, which demonstrates the accuracy of the present element. Finally, several parameters, such as fiber orientations, stacking sequences, and boundary conditions, are considered to determine and understand their effects on the strength of these laminated beams.</abstract><cop>Gdansk</cop><pub>Sciendo</pub><doi>10.2478/adms-2023-0003</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2083-4799 |
ispartof | Advances in materials science, 2023-03, Vol.23 (1), p.32-57 |
issn | 2083-4799 1730-2439 2083-4799 |
language | eng |
recordid | cdi_proquest_journals_2785483883 |
source | De Gruyter Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | beam bending Boundary conditions Composite beams composite materials failure Failure analysis Failure mechanisms Fiber orientation finite element Finite element method Laminar composites Rectangular plates Sequences |
title | Numerical Failure Analysis of Laminated Beams Using a Refined Finite Element Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Failure%20Analysis%20of%20Laminated%20Beams%20Using%20a%20Refined%20Finite%20Element%20Model&rft.jtitle=Advances%20in%20materials%20science&rft.au=Layachi,%20Maroua&rft.date=2023-03-01&rft.volume=23&rft.issue=1&rft.spage=32&rft.epage=57&rft.pages=32-57&rft.issn=2083-4799&rft.eissn=2083-4799&rft_id=info:doi/10.2478/adms-2023-0003&rft_dat=%3Cproquest_cross%3E2785483883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785483883&rft_id=info:pmid/&rfr_iscdi=true |