Using Cognitive Models to Understand and Counteract the Effect of Self-Induced Bias on Recommendation Algorithms
Recommendation algorithms trained on a training set containing sub-optimal decisions may increase the likelihood of making more bad decisions in the future. We call this harmful effect self-induced bias, to emphasize that the bias is driven directly by the user’s past choices. In order to better und...
Gespeichert in:
Veröffentlicht in: | Journal of Artificial Intelligence and Soft Computing Research 2023-03, Vol.13 (2), p.73-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!