Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling
For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Klemt, Bernhard El-Homsy, Victor Nurizzo, Martin Hamonic, Pierre Martinez, Biel Bruna Cardoso Paz spence, Cameron Dartiailh, Matthieu Jadot, Baptiste Chanrion, Emmanuel Thiney, Vivien Lethiecq, Renan Bertrand, Benoit Niebojewski, Heimanu Bäuerle, Christopher Vinet, Maud Yann-Michel Niquet Meunier, Tristan Urdampilleta, Matias |
description | For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL) new functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proof of concepts. Once the process is established it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric field and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2785479023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785479023</sourcerecordid><originalsourceid>FETCH-proquest_journals_27854790233</originalsourceid><addsrcrecordid>eNqNjksKwjAYhIMgWLR3-MF1IaatretScSMudF9CTGtKmsQ8FG9vKB5AGBiY-RhmgRKS57usLghZodS5EWNM9hUpyzxBrJWceSsYlTBRJUyQ1AutQPdAwQk1SA58ZmLojFAQ1ZwvV3gL_4BJMKsnOijugar7TGQvKiX_ANPByLiwQcueSsfTn6_R9tjemlNmrH4G7nw36mBVrDpS1WVRHXB8_B_1BdwzRiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785479023</pqid></control><display><type>article</type><title>Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling</title><source>Free E- Journals</source><creator>Klemt, Bernhard ; El-Homsy, Victor ; Nurizzo, Martin ; Hamonic, Pierre ; Martinez, Biel ; Bruna Cardoso Paz ; spence, Cameron ; Dartiailh, Matthieu ; Jadot, Baptiste ; Chanrion, Emmanuel ; Thiney, Vivien ; Lethiecq, Renan ; Bertrand, Benoit ; Niebojewski, Heimanu ; Bäuerle, Christopher ; Vinet, Maud ; Yann-Michel Niquet ; Meunier, Tristan ; Urdampilleta, Matias</creator><creatorcontrib>Klemt, Bernhard ; El-Homsy, Victor ; Nurizzo, Martin ; Hamonic, Pierre ; Martinez, Biel ; Bruna Cardoso Paz ; spence, Cameron ; Dartiailh, Matthieu ; Jadot, Baptiste ; Chanrion, Emmanuel ; Thiney, Vivien ; Lethiecq, Renan ; Bertrand, Benoit ; Niebojewski, Heimanu ; Bäuerle, Christopher ; Vinet, Maud ; Yann-Michel Niquet ; Meunier, Tristan ; Urdampilleta, Matias</creatorcontrib><description>For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL) new functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proof of concepts. Once the process is established it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric field and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>CMOS ; Coupling ; Decoupling ; Electric fields ; Electron spin ; Electrons ; Qubits (quantum computing) ; Rabi frequency ; Sequences ; Single electrons ; Valleys</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Klemt, Bernhard</creatorcontrib><creatorcontrib>El-Homsy, Victor</creatorcontrib><creatorcontrib>Nurizzo, Martin</creatorcontrib><creatorcontrib>Hamonic, Pierre</creatorcontrib><creatorcontrib>Martinez, Biel</creatorcontrib><creatorcontrib>Bruna Cardoso Paz</creatorcontrib><creatorcontrib>spence, Cameron</creatorcontrib><creatorcontrib>Dartiailh, Matthieu</creatorcontrib><creatorcontrib>Jadot, Baptiste</creatorcontrib><creatorcontrib>Chanrion, Emmanuel</creatorcontrib><creatorcontrib>Thiney, Vivien</creatorcontrib><creatorcontrib>Lethiecq, Renan</creatorcontrib><creatorcontrib>Bertrand, Benoit</creatorcontrib><creatorcontrib>Niebojewski, Heimanu</creatorcontrib><creatorcontrib>Bäuerle, Christopher</creatorcontrib><creatorcontrib>Vinet, Maud</creatorcontrib><creatorcontrib>Yann-Michel Niquet</creatorcontrib><creatorcontrib>Meunier, Tristan</creatorcontrib><creatorcontrib>Urdampilleta, Matias</creatorcontrib><title>Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling</title><title>arXiv.org</title><description>For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL) new functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proof of concepts. Once the process is established it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric field and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range.</description><subject>CMOS</subject><subject>Coupling</subject><subject>Decoupling</subject><subject>Electric fields</subject><subject>Electron spin</subject><subject>Electrons</subject><subject>Qubits (quantum computing)</subject><subject>Rabi frequency</subject><subject>Sequences</subject><subject>Single electrons</subject><subject>Valleys</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjksKwjAYhIMgWLR3-MF1IaatretScSMudF9CTGtKmsQ8FG9vKB5AGBiY-RhmgRKS57usLghZodS5EWNM9hUpyzxBrJWceSsYlTBRJUyQ1AutQPdAwQk1SA58ZmLojFAQ1ZwvV3gL_4BJMKsnOijugar7TGQvKiX_ANPByLiwQcueSsfTn6_R9tjemlNmrH4G7nw36mBVrDpS1WVRHXB8_B_1BdwzRiA</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Klemt, Bernhard</creator><creator>El-Homsy, Victor</creator><creator>Nurizzo, Martin</creator><creator>Hamonic, Pierre</creator><creator>Martinez, Biel</creator><creator>Bruna Cardoso Paz</creator><creator>spence, Cameron</creator><creator>Dartiailh, Matthieu</creator><creator>Jadot, Baptiste</creator><creator>Chanrion, Emmanuel</creator><creator>Thiney, Vivien</creator><creator>Lethiecq, Renan</creator><creator>Bertrand, Benoit</creator><creator>Niebojewski, Heimanu</creator><creator>Bäuerle, Christopher</creator><creator>Vinet, Maud</creator><creator>Yann-Michel Niquet</creator><creator>Meunier, Tristan</creator><creator>Urdampilleta, Matias</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230309</creationdate><title>Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling</title><author>Klemt, Bernhard ; El-Homsy, Victor ; Nurizzo, Martin ; Hamonic, Pierre ; Martinez, Biel ; Bruna Cardoso Paz ; spence, Cameron ; Dartiailh, Matthieu ; Jadot, Baptiste ; Chanrion, Emmanuel ; Thiney, Vivien ; Lethiecq, Renan ; Bertrand, Benoit ; Niebojewski, Heimanu ; Bäuerle, Christopher ; Vinet, Maud ; Yann-Michel Niquet ; Meunier, Tristan ; Urdampilleta, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27854790233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>CMOS</topic><topic>Coupling</topic><topic>Decoupling</topic><topic>Electric fields</topic><topic>Electron spin</topic><topic>Electrons</topic><topic>Qubits (quantum computing)</topic><topic>Rabi frequency</topic><topic>Sequences</topic><topic>Single electrons</topic><topic>Valleys</topic><toplevel>online_resources</toplevel><creatorcontrib>Klemt, Bernhard</creatorcontrib><creatorcontrib>El-Homsy, Victor</creatorcontrib><creatorcontrib>Nurizzo, Martin</creatorcontrib><creatorcontrib>Hamonic, Pierre</creatorcontrib><creatorcontrib>Martinez, Biel</creatorcontrib><creatorcontrib>Bruna Cardoso Paz</creatorcontrib><creatorcontrib>spence, Cameron</creatorcontrib><creatorcontrib>Dartiailh, Matthieu</creatorcontrib><creatorcontrib>Jadot, Baptiste</creatorcontrib><creatorcontrib>Chanrion, Emmanuel</creatorcontrib><creatorcontrib>Thiney, Vivien</creatorcontrib><creatorcontrib>Lethiecq, Renan</creatorcontrib><creatorcontrib>Bertrand, Benoit</creatorcontrib><creatorcontrib>Niebojewski, Heimanu</creatorcontrib><creatorcontrib>Bäuerle, Christopher</creatorcontrib><creatorcontrib>Vinet, Maud</creatorcontrib><creatorcontrib>Yann-Michel Niquet</creatorcontrib><creatorcontrib>Meunier, Tristan</creatorcontrib><creatorcontrib>Urdampilleta, Matias</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klemt, Bernhard</au><au>El-Homsy, Victor</au><au>Nurizzo, Martin</au><au>Hamonic, Pierre</au><au>Martinez, Biel</au><au>Bruna Cardoso Paz</au><au>spence, Cameron</au><au>Dartiailh, Matthieu</au><au>Jadot, Baptiste</au><au>Chanrion, Emmanuel</au><au>Thiney, Vivien</au><au>Lethiecq, Renan</au><au>Bertrand, Benoit</au><au>Niebojewski, Heimanu</au><au>Bäuerle, Christopher</au><au>Vinet, Maud</au><au>Yann-Michel Niquet</au><au>Meunier, Tristan</au><au>Urdampilleta, Matias</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling</atitle><jtitle>arXiv.org</jtitle><date>2023-03-09</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>For semiconductor spin qubits, complementary-metal-oxide-semiconductor (CMOS) technology is the ideal candidate for reliable and scalable fabrication. Making the direct leap from academic fabrication to qubits fabricated fully by industrial CMOS standards is difficult without intermediate solutions. With a flexible back-end-of-line (BEOL) new functionalities such as micromagnets or superconducting circuits can be added in a post-CMOS process to study the physics of these devices or achieve proof of concepts. Once the process is established it can be incorporated in the foundry-compatible process flow. Here, we study a single electron spin qubit in a CMOS device with a micromagnet integrated in the flexible BEOL. We exploit the synthetic spin orbit coupling (SOC) to control the qubit via electric field and we investigate the spin-valley physics in the presence of SOC where we show an enhancement of the Rabi frequency at the spin-valley hotspot. Finally, we probe the high frequency noise in the system using dynamical decoupling pulse sequences and demonstrate that charge noise dominates the qubit decoherence in this range.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2785479023 |
source | Free E- Journals |
subjects | CMOS Coupling Decoupling Electric fields Electron spin Electrons Qubits (quantum computing) Rabi frequency Sequences Single electrons Valleys |
title | Electrical manipulation of a single electron spin in CMOS with micromagnet and spin-valley coupling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Electrical%20manipulation%20of%20a%20single%20electron%20spin%20in%20CMOS%20with%20micromagnet%20and%20spin-valley%20coupling&rft.jtitle=arXiv.org&rft.au=Klemt,%20Bernhard&rft.date=2023-03-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2785479023%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785479023&rft_id=info:pmid/&rfr_iscdi=true |