Making a Computational Attorney
This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal br...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Zhang, Dell Schilder, Frank Conrad, Jack G Makrehchi, Masoud David von Rickenbach Moulinier, Isabelle |
description | This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal briefs for the prosecution or defense in court. In particular, we discuss what a ChatGPT-like Large Legal Language Model (L\(^3\)M) can and cannot do today, which will inspire researchers with promising short-term and long-term research objectives. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2785475376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785475376</sourcerecordid><originalsourceid>FETCH-proquest_journals_27854753763</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ903MzsxLV0hUcM7PLSgtSSzJzM9LzFFwLCnJL8pLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUAdxfFG5hamJuamxuZmxsSpAgDFJSze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785475376</pqid></control><display><type>article</type><title>Making a Computational Attorney</title><source>Free E- Journals</source><creator>Zhang, Dell ; Schilder, Frank ; Conrad, Jack G ; Makrehchi, Masoud ; David von Rickenbach ; Moulinier, Isabelle</creator><creatorcontrib>Zhang, Dell ; Schilder, Frank ; Conrad, Jack G ; Makrehchi, Masoud ; David von Rickenbach ; Moulinier, Isabelle</creatorcontrib><description>This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal briefs for the prosecution or defense in court. In particular, we discuss what a ChatGPT-like Large Legal Language Model (L\(^3\)M) can and cannot do today, which will inspire researchers with promising short-term and long-term research objectives.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data mining ; Machine learning ; Software agents ; Task complexity</subject><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Schilder, Frank</creatorcontrib><creatorcontrib>Conrad, Jack G</creatorcontrib><creatorcontrib>Makrehchi, Masoud</creatorcontrib><creatorcontrib>David von Rickenbach</creatorcontrib><creatorcontrib>Moulinier, Isabelle</creatorcontrib><title>Making a Computational Attorney</title><title>arXiv.org</title><description>This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal briefs for the prosecution or defense in court. In particular, we discuss what a ChatGPT-like Large Legal Language Model (L\(^3\)M) can and cannot do today, which will inspire researchers with promising short-term and long-term research objectives.</description><subject>Data mining</subject><subject>Machine learning</subject><subject>Software agents</subject><subject>Task complexity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ903MzsxLV0hUcM7PLSgtSSzJzM9LzFFwLCnJL8pLreRhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRUAdxfFG5hamJuamxuZmxsSpAgDFJSze</recordid><startdate>20230307</startdate><enddate>20230307</enddate><creator>Zhang, Dell</creator><creator>Schilder, Frank</creator><creator>Conrad, Jack G</creator><creator>Makrehchi, Masoud</creator><creator>David von Rickenbach</creator><creator>Moulinier, Isabelle</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230307</creationdate><title>Making a Computational Attorney</title><author>Zhang, Dell ; Schilder, Frank ; Conrad, Jack G ; Makrehchi, Masoud ; David von Rickenbach ; Moulinier, Isabelle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27854753763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data mining</topic><topic>Machine learning</topic><topic>Software agents</topic><topic>Task complexity</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dell</creatorcontrib><creatorcontrib>Schilder, Frank</creatorcontrib><creatorcontrib>Conrad, Jack G</creatorcontrib><creatorcontrib>Makrehchi, Masoud</creatorcontrib><creatorcontrib>David von Rickenbach</creatorcontrib><creatorcontrib>Moulinier, Isabelle</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dell</au><au>Schilder, Frank</au><au>Conrad, Jack G</au><au>Makrehchi, Masoud</au><au>David von Rickenbach</au><au>Moulinier, Isabelle</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Making a Computational Attorney</atitle><jtitle>arXiv.org</jtitle><date>2023-03-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>This "blue sky idea" paper outlines the opportunities and challenges in data mining and machine learning involving making a computational attorney -- an intelligent software agent capable of helping human lawyers with a wide range of complex high-level legal tasks such as drafting legal briefs for the prosecution or defense in court. In particular, we discuss what a ChatGPT-like Large Legal Language Model (L\(^3\)M) can and cannot do today, which will inspire researchers with promising short-term and long-term research objectives.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2785475376 |
source | Free E- Journals |
subjects | Data mining Machine learning Software agents Task complexity |
title | Making a Computational Attorney |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Making%20a%20Computational%20Attorney&rft.jtitle=arXiv.org&rft.au=Zhang,%20Dell&rft.date=2023-03-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2785475376%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785475376&rft_id=info:pmid/&rfr_iscdi=true |