Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques

Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2023-03, Vol.20 (1), p.563-577
Hauptverfasser: Li, Zhiyuan, Wu, Lijun, Zeng, Xiangyun, Yue, Xiaofeng, Jing, Yulin, Wu, Wei, Su, Kaile
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 1
container_start_page 563
container_title IEEE eTransactions on network and service management
container_volume 20
creator Li, Zhiyuan
Wu, Lijun
Zeng, Xiangyun
Yue, Xiaofeng
Jing, Yulin
Wu, Wei
Su, Kaile
description Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.
doi_str_mv 10.1109/TNSM.2022.3205900
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2785446650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9888778</ieee_id><sourcerecordid>2785446650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QLwEPG9NsskmOZZiq9AP0eo1pNlZm7ImNdsW_Pfu0iKeZg7vM-_wIHRLyYBSoh-W87fZgBHGBjkjQhNyhnpU5yzjIpfn__ZLdNU0G0KEopr10Msi1D4AHsWYSh_sDko8H3_gV2jiPjnAw7qOzu58DPjgLZ7HA9R4Zt26o6ZgU_DhEy_BrYP_3kNzjS4qWzdwc5p99D5-XI6esuli8jwaTjPHOFeZFlKoUlApmRRAOS2dArFSRFRFSUWlqM2hAF05C04Wqqgkr5TlVFMiV9zmfXR_vLtNsevdmU37cGgrDZNKcF4UgrQpeky5FJsmQWW2yX_Z9GMoMZ0404kznThzEtcyd0fGA8BfXiulpFT5L1hVaKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446650</pqid></control><display><type>article</type><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</creator><creatorcontrib>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</creatorcontrib><description>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3205900</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Deep learning ; Expenditures ; Feature extraction ; Heuristic algorithms ; Heuristic methods ; Internet service providers ; Machine learning ; multi-agent deep reinforcement learning ; Multiagent systems ; Network function virtualization ; Neural networks ; Optimization ; Reinforcement learning ; Resource allocation ; Resource management ; Resource utilization ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.563-577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</citedby><cites>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</cites><orcidid>0000-0002-1804-3485 ; 0000-0002-0975-4613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9888778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9888778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Zeng, Xiangyun</creatorcontrib><creatorcontrib>Yue, Xiaofeng</creatorcontrib><creatorcontrib>Jing, Yulin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Su, Kaile</creatorcontrib><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Expenditures</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Internet service providers</subject><subject>Machine learning</subject><subject>multi-agent deep reinforcement learning</subject><subject>Multiagent systems</subject><subject>Network function virtualization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Training</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QLwEPG9NsskmOZZiq9AP0eo1pNlZm7ImNdsW_Pfu0iKeZg7vM-_wIHRLyYBSoh-W87fZgBHGBjkjQhNyhnpU5yzjIpfn__ZLdNU0G0KEopr10Msi1D4AHsWYSh_sDko8H3_gV2jiPjnAw7qOzu58DPjgLZ7HA9R4Zt26o6ZgU_DhEy_BrYP_3kNzjS4qWzdwc5p99D5-XI6esuli8jwaTjPHOFeZFlKoUlApmRRAOS2dArFSRFRFSUWlqM2hAF05C04Wqqgkr5TlVFMiV9zmfXR_vLtNsevdmU37cGgrDZNKcF4UgrQpeky5FJsmQWW2yX_Z9GMoMZ0404kznThzEtcyd0fGA8BfXiulpFT5L1hVaKw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Li, Zhiyuan</creator><creator>Wu, Lijun</creator><creator>Zeng, Xiangyun</creator><creator>Yue, Xiaofeng</creator><creator>Jing, Yulin</creator><creator>Wu, Wei</creator><creator>Su, Kaile</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1804-3485</orcidid><orcidid>https://orcid.org/0000-0002-0975-4613</orcidid></search><sort><creationdate>202303</creationdate><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><author>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Expenditures</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Internet service providers</topic><topic>Machine learning</topic><topic>multi-agent deep reinforcement learning</topic><topic>Multiagent systems</topic><topic>Network function virtualization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Zeng, Xiangyun</creatorcontrib><creatorcontrib>Yue, Xiaofeng</creatorcontrib><creatorcontrib>Jing, Yulin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Su, Kaile</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhiyuan</au><au>Wu, Lijun</au><au>Zeng, Xiangyun</au><au>Yue, Xiaofeng</au><au>Jing, Yulin</au><au>Wu, Wei</au><au>Su, Kaile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-03</date><risdate>2023</risdate><volume>20</volume><issue>1</issue><spage>563</spage><epage>577</epage><pages>563-577</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3205900</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1804-3485</orcidid><orcidid>https://orcid.org/0000-0002-0975-4613</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.563-577
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2785446650
source IEEE Electronic Library (IEL)
subjects Algorithms
Deep learning
Expenditures
Feature extraction
Heuristic algorithms
Heuristic methods
Internet service providers
Machine learning
multi-agent deep reinforcement learning
Multiagent systems
Network function virtualization
Neural networks
Optimization
Reinforcement learning
Resource allocation
Resource management
Resource utilization
Training
title Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Coordinated%20NFV%20Resource%20Allocation%20via%20Novel%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Li,%20Zhiyuan&rft.date=2023-03&rft.volume=20&rft.issue=1&rft.spage=563&rft.epage=577&rft.pages=563-577&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3205900&rft_dat=%3Cproquest_RIE%3E2785446650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446650&rft_id=info:pmid/&rft_ieee_id=9888778&rfr_iscdi=true