Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques
Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-03, Vol.20 (1), p.563-577 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 577 |
---|---|
container_issue | 1 |
container_start_page | 563 |
container_title | IEEE eTransactions on network and service management |
container_volume | 20 |
creator | Li, Zhiyuan Wu, Lijun Zeng, Xiangyun Yue, Xiaofeng Jing, Yulin Wu, Wei Su, Kaile |
description | Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively. |
doi_str_mv | 10.1109/TNSM.2022.3205900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2785446650</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9888778</ieee_id><sourcerecordid>2785446650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWKs_QLwEPG9NsskmOZZiq9AP0eo1pNlZm7ImNdsW_Pfu0iKeZg7vM-_wIHRLyYBSoh-W87fZgBHGBjkjQhNyhnpU5yzjIpfn__ZLdNU0G0KEopr10Msi1D4AHsWYSh_sDko8H3_gV2jiPjnAw7qOzu58DPjgLZ7HA9R4Zt26o6ZgU_DhEy_BrYP_3kNzjS4qWzdwc5p99D5-XI6esuli8jwaTjPHOFeZFlKoUlApmRRAOS2dArFSRFRFSUWlqM2hAF05C04Wqqgkr5TlVFMiV9zmfXR_vLtNsevdmU37cGgrDZNKcF4UgrQpeky5FJsmQWW2yX_Z9GMoMZ0404kznThzEtcyd0fGA8BfXiulpFT5L1hVaKw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785446650</pqid></control><display><type>article</type><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</creator><creatorcontrib>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</creatorcontrib><description>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2022.3205900</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Deep learning ; Expenditures ; Feature extraction ; Heuristic algorithms ; Heuristic methods ; Internet service providers ; Machine learning ; multi-agent deep reinforcement learning ; Multiagent systems ; Network function virtualization ; Neural networks ; Optimization ; Reinforcement learning ; Resource allocation ; Resource management ; Resource utilization ; Training</subject><ispartof>IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.563-577</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</citedby><cites>FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</cites><orcidid>0000-0002-1804-3485 ; 0000-0002-0975-4613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9888778$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9888778$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Zeng, Xiangyun</creatorcontrib><creatorcontrib>Yue, Xiaofeng</creatorcontrib><creatorcontrib>Jing, Yulin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Su, Kaile</creatorcontrib><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</description><subject>Algorithms</subject><subject>Deep learning</subject><subject>Expenditures</subject><subject>Feature extraction</subject><subject>Heuristic algorithms</subject><subject>Heuristic methods</subject><subject>Internet service providers</subject><subject>Machine learning</subject><subject>multi-agent deep reinforcement learning</subject><subject>Multiagent systems</subject><subject>Network function virtualization</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Reinforcement learning</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Resource utilization</subject><subject>Training</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWKs_QLwEPG9NsskmOZZiq9AP0eo1pNlZm7ImNdsW_Pfu0iKeZg7vM-_wIHRLyYBSoh-W87fZgBHGBjkjQhNyhnpU5yzjIpfn__ZLdNU0G0KEopr10Msi1D4AHsWYSh_sDko8H3_gV2jiPjnAw7qOzu58DPjgLZ7HA9R4Zt26o6ZgU_DhEy_BrYP_3kNzjS4qWzdwc5p99D5-XI6esuli8jwaTjPHOFeZFlKoUlApmRRAOS2dArFSRFRFSUWlqM2hAF05C04Wqqgkr5TlVFMiV9zmfXR_vLtNsevdmU37cGgrDZNKcF4UgrQpeky5FJsmQWW2yX_Z9GMoMZ0404kznThzEtcyd0fGA8BfXiulpFT5L1hVaKw</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Li, Zhiyuan</creator><creator>Wu, Lijun</creator><creator>Zeng, Xiangyun</creator><creator>Yue, Xiaofeng</creator><creator>Jing, Yulin</creator><creator>Wu, Wei</creator><creator>Su, Kaile</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1804-3485</orcidid><orcidid>https://orcid.org/0000-0002-0975-4613</orcidid></search><sort><creationdate>202303</creationdate><title>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</title><author>Li, Zhiyuan ; Wu, Lijun ; Zeng, Xiangyun ; Yue, Xiaofeng ; Jing, Yulin ; Wu, Wei ; Su, Kaile</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2448-95758d5177275e141dc8e5b805f6d15f81a3e6e9fcaec7686f74f8a419107b4a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Deep learning</topic><topic>Expenditures</topic><topic>Feature extraction</topic><topic>Heuristic algorithms</topic><topic>Heuristic methods</topic><topic>Internet service providers</topic><topic>Machine learning</topic><topic>multi-agent deep reinforcement learning</topic><topic>Multiagent systems</topic><topic>Network function virtualization</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Reinforcement learning</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Resource utilization</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhiyuan</creatorcontrib><creatorcontrib>Wu, Lijun</creatorcontrib><creatorcontrib>Zeng, Xiangyun</creatorcontrib><creatorcontrib>Yue, Xiaofeng</creatorcontrib><creatorcontrib>Jing, Yulin</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Su, Kaile</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Zhiyuan</au><au>Wu, Lijun</au><au>Zeng, Xiangyun</au><au>Yue, Xiaofeng</au><au>Jing, Yulin</au><au>Wu, Wei</au><au>Su, Kaile</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-03</date><risdate>2023</risdate><volume>20</volume><issue>1</issue><spage>563</spage><epage>577</epage><pages>563-577</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Thanks to Network Function Virtualization (NFV), Internet Service Providers (ISPs) can improve network resource utilization with significantly reduced capital and operational expenditures. To dig deeper into the potential of NFV, an important challenge is the resource allocation problem in NFV (NFV-RA), which can be divided into three stages: VNFs chain composition, VNF forwarding graph embedding, and VNFs scheduling. The key to the NFV-RA problem is to design an effective and coordinated resource allocation algorithm for the three stages. Besides, the NFV-RA problem has been proved to be NP-Hard, and thus most existing approaches focus on heuristic and meta-heuristic algorithms. In this paper, we propose an NFV online coordinated resource allocation framework (OCRA) that completes the three stages simultaneously in a coordinated manner by combining parallel Multi-Agent Deep Reinforcement Learning with novel neural networks and RL training techniques. The extensive experimental results show that compared with the state-of-the-art solutions, OCRA is highly-efficient in terms of time, with up to 50% and 10.8% improvement on resource overhead and acceptance ratio, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2022.3205900</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-1804-3485</orcidid><orcidid>https://orcid.org/0000-0002-0975-4613</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-03, Vol.20 (1), p.563-577 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_2785446650 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Deep learning Expenditures Feature extraction Heuristic algorithms Heuristic methods Internet service providers Machine learning multi-agent deep reinforcement learning Multiagent systems Network function virtualization Neural networks Optimization Reinforcement learning Resource allocation Resource management Resource utilization Training |
title | Online Coordinated NFV Resource Allocation via Novel Machine Learning Techniques |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A10%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Coordinated%20NFV%20Resource%20Allocation%20via%20Novel%20Machine%20Learning%20Techniques&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=Li,%20Zhiyuan&rft.date=2023-03&rft.volume=20&rft.issue=1&rft.spage=563&rft.epage=577&rft.pages=563-577&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2022.3205900&rft_dat=%3Cproquest_RIE%3E2785446650%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785446650&rft_id=info:pmid/&rft_ieee_id=9888778&rfr_iscdi=true |