How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model

Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-03, Vol.15 (5), p.3948
Hauptverfasser: Liao, Suqin, Hu, Qianying, Wei, Jingjing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 3948
container_title Sustainability
container_volume 15
creator Liao, Suqin
Hu, Qianying
Wei, Jingjing
description Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.
doi_str_mv 10.3390/su15053948
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785244160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741843172</galeid><sourcerecordid>A741843172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhRdRsFRf_AUBnxRac9ndZH1b661QEbw8L7PZpKZsNzXJVvvvjVbQzjzMYfjmwHCS5ITgMWMFvvA9yXDGilTsJQOKORkRnOH9f_owOfZ-gWMxRgqSD5K3e_uBgkUztVYO5gpdmTm6hgCo7KDdBCPRBFZQm9YEozzS1qFp19k1BGM7VC5r06jPoJwJm0tUogfVGAiqQQ-2iYY_0Ldsj5IDDa1Xx79zmLze3rxM7kezx7vppJyNJMtFGGUpq1OeUkI1F5Iy4FoLwhQXXNdFoUUNnEvdyEbJHNNMsByY5EUBGtNGEjZMTre-K2ffe-VDtbC9i7_4inKR0TQlOY7UeEvNoVWV6bQNDmTsRi2NtJ3SJu5LnhKRMsJpPDjbOYhMiH_Pofe-mj4_7bLnW1Y6671Tulo5swS3qQiuvpOq_pJiX6wahCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785244160</pqid></control><display><type>article</type><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</creator><creatorcontrib>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</creatorcontrib><description>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15053948</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Big Data ; Collaboration ; Competition ; Competitive advantage ; Data analysis ; Decision making ; Economic aspects ; Flexibility ; Functional integration ; Influence ; Information sharing ; Infrastructure ; Innovations ; Knowledge ; Management ; Organizational change ; Strategic management ; Supply chains ; Sustainability ; Technological innovations</subject><ispartof>Sustainability, 2023-03, Vol.15 (5), p.3948</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</citedby><cites>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Liao, Suqin</creatorcontrib><creatorcontrib>Hu, Qianying</creatorcontrib><creatorcontrib>Wei, Jingjing</creatorcontrib><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><title>Sustainability</title><description>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</description><subject>Analysis</subject><subject>Big Data</subject><subject>Collaboration</subject><subject>Competition</subject><subject>Competitive advantage</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Economic aspects</subject><subject>Flexibility</subject><subject>Functional integration</subject><subject>Influence</subject><subject>Information sharing</subject><subject>Infrastructure</subject><subject>Innovations</subject><subject>Knowledge</subject><subject>Management</subject><subject>Organizational change</subject><subject>Strategic management</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Technological innovations</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkVtLAzEQhRdRsFRf_AUBnxRac9ndZH1b661QEbw8L7PZpKZsNzXJVvvvjVbQzjzMYfjmwHCS5ITgMWMFvvA9yXDGilTsJQOKORkRnOH9f_owOfZ-gWMxRgqSD5K3e_uBgkUztVYO5gpdmTm6hgCo7KDdBCPRBFZQm9YEozzS1qFp19k1BGM7VC5r06jPoJwJm0tUogfVGAiqQQ-2iYY_0Ldsj5IDDa1Xx79zmLze3rxM7kezx7vppJyNJMtFGGUpq1OeUkI1F5Iy4FoLwhQXXNdFoUUNnEvdyEbJHNNMsByY5EUBGtNGEjZMTre-K2ffe-VDtbC9i7_4inKR0TQlOY7UeEvNoVWV6bQNDmTsRi2NtJ3SJu5LnhKRMsJpPDjbOYhMiH_Pofe-mj4_7bLnW1Y6671Tulo5swS3qQiuvpOq_pJiX6wahCY</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liao, Suqin</creator><creator>Hu, Qianying</creator><creator>Wei, Jingjing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><author>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Big Data</topic><topic>Collaboration</topic><topic>Competition</topic><topic>Competitive advantage</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Economic aspects</topic><topic>Flexibility</topic><topic>Functional integration</topic><topic>Influence</topic><topic>Information sharing</topic><topic>Infrastructure</topic><topic>Innovations</topic><topic>Knowledge</topic><topic>Management</topic><topic>Organizational change</topic><topic>Strategic management</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Technological innovations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Suqin</creatorcontrib><creatorcontrib>Hu, Qianying</creatorcontrib><creatorcontrib>Wei, Jingjing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Suqin</au><au>Hu, Qianying</au><au>Wei, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</atitle><jtitle>Sustainability</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><spage>3948</spage><pages>3948-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15053948</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-03, Vol.15 (5), p.3948
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2785244160
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Analysis
Big Data
Collaboration
Competition
Competitive advantage
Data analysis
Decision making
Economic aspects
Flexibility
Functional integration
Influence
Information sharing
Infrastructure
Innovations
Knowledge
Management
Organizational change
Strategic management
Supply chains
Sustainability
Technological innovations
title How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Leverage%20Big%20Data%20Analytic%20Capabilities%20for%20Innovation%20Ambidexterity:%20A%20Mediated%20Moderation%20Model&rft.jtitle=Sustainability&rft.au=Liao,%20Suqin&rft.date=2023-03-01&rft.volume=15&rft.issue=5&rft.spage=3948&rft.pages=3948-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15053948&rft_dat=%3Cgale_proqu%3EA741843172%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785244160&rft_id=info:pmid/&rft_galeid=A741843172&rfr_iscdi=true