How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model
Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our m...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-03, Vol.15 (5), p.3948 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 3948 |
container_title | Sustainability |
container_volume | 15 |
creator | Liao, Suqin Hu, Qianying Wei, Jingjing |
description | Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective. |
doi_str_mv | 10.3390/su15053948 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785244160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741843172</galeid><sourcerecordid>A741843172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</originalsourceid><addsrcrecordid>eNpVkVtLAzEQhRdRsFRf_AUBnxRac9ndZH1b661QEbw8L7PZpKZsNzXJVvvvjVbQzjzMYfjmwHCS5ITgMWMFvvA9yXDGilTsJQOKORkRnOH9f_owOfZ-gWMxRgqSD5K3e_uBgkUztVYO5gpdmTm6hgCo7KDdBCPRBFZQm9YEozzS1qFp19k1BGM7VC5r06jPoJwJm0tUogfVGAiqQQ-2iYY_0Ldsj5IDDa1Xx79zmLze3rxM7kezx7vppJyNJMtFGGUpq1OeUkI1F5Iy4FoLwhQXXNdFoUUNnEvdyEbJHNNMsByY5EUBGtNGEjZMTre-K2ffe-VDtbC9i7_4inKR0TQlOY7UeEvNoVWV6bQNDmTsRi2NtJ3SJu5LnhKRMsJpPDjbOYhMiH_Pofe-mj4_7bLnW1Y6671Tulo5swS3qQiuvpOq_pJiX6wahCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785244160</pqid></control><display><type>article</type><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</creator><creatorcontrib>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</creatorcontrib><description>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su15053948</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Analysis ; Big Data ; Collaboration ; Competition ; Competitive advantage ; Data analysis ; Decision making ; Economic aspects ; Flexibility ; Functional integration ; Influence ; Information sharing ; Infrastructure ; Innovations ; Knowledge ; Management ; Organizational change ; Strategic management ; Supply chains ; Sustainability ; Technological innovations</subject><ispartof>Sustainability, 2023-03, Vol.15 (5), p.3948</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</citedby><cites>FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Liao, Suqin</creatorcontrib><creatorcontrib>Hu, Qianying</creatorcontrib><creatorcontrib>Wei, Jingjing</creatorcontrib><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><title>Sustainability</title><description>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</description><subject>Analysis</subject><subject>Big Data</subject><subject>Collaboration</subject><subject>Competition</subject><subject>Competitive advantage</subject><subject>Data analysis</subject><subject>Decision making</subject><subject>Economic aspects</subject><subject>Flexibility</subject><subject>Functional integration</subject><subject>Influence</subject><subject>Information sharing</subject><subject>Infrastructure</subject><subject>Innovations</subject><subject>Knowledge</subject><subject>Management</subject><subject>Organizational change</subject><subject>Strategic management</subject><subject>Supply chains</subject><subject>Sustainability</subject><subject>Technological innovations</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkVtLAzEQhRdRsFRf_AUBnxRac9ndZH1b661QEbw8L7PZpKZsNzXJVvvvjVbQzjzMYfjmwHCS5ITgMWMFvvA9yXDGilTsJQOKORkRnOH9f_owOfZ-gWMxRgqSD5K3e_uBgkUztVYO5gpdmTm6hgCo7KDdBCPRBFZQm9YEozzS1qFp19k1BGM7VC5r06jPoJwJm0tUogfVGAiqQQ-2iYY_0Ldsj5IDDa1Xx79zmLze3rxM7kezx7vppJyNJMtFGGUpq1OeUkI1F5Iy4FoLwhQXXNdFoUUNnEvdyEbJHNNMsByY5EUBGtNGEjZMTre-K2ffe-VDtbC9i7_4inKR0TQlOY7UeEvNoVWV6bQNDmTsRi2NtJ3SJu5LnhKRMsJpPDjbOYhMiH_Pofe-mj4_7bLnW1Y6671Tulo5swS3qQiuvpOq_pJiX6wahCY</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Liao, Suqin</creator><creator>Hu, Qianying</creator><creator>Wei, Jingjing</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230301</creationdate><title>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</title><author>Liao, Suqin ; Hu, Qianying ; Wei, Jingjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-543b474212f78c23a7ff813e787fb99f8ba77cfdcdec6025836a3c799af02dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Big Data</topic><topic>Collaboration</topic><topic>Competition</topic><topic>Competitive advantage</topic><topic>Data analysis</topic><topic>Decision making</topic><topic>Economic aspects</topic><topic>Flexibility</topic><topic>Functional integration</topic><topic>Influence</topic><topic>Information sharing</topic><topic>Infrastructure</topic><topic>Innovations</topic><topic>Knowledge</topic><topic>Management</topic><topic>Organizational change</topic><topic>Strategic management</topic><topic>Supply chains</topic><topic>Sustainability</topic><topic>Technological innovations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Suqin</creatorcontrib><creatorcontrib>Hu, Qianying</creatorcontrib><creatorcontrib>Wei, Jingjing</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Suqin</au><au>Hu, Qianying</au><au>Wei, Jingjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model</atitle><jtitle>Sustainability</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><spage>3948</spage><pages>3948-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>Building upon the knowledge-based dynamic capabilities view, this study seeks to examine how big data analytic capabilities can be leveraged to improve innovation ambidexterity by developing a mediated moderation framework. Survey data were collected from 199 Chinese big data companies to test our model. The results indicate that the dynamic decision-making capability mediates the relationship between big data analytic capabilities and innovation ambidexterity, and this mediating relationship is conditional on the moderator variable of cross-functional integration. This study enriches the literature about big data analytic capabilities and innovation ambidexterity by clarifying how big data analytic capabilities are positively related to innovation ambidexterity and uncovering the driver for pursuing innovation ambidexterity in a digital context. It also contributes to this line of research by revealing contingent factors to leverage big data analytic capabilities from the knowledge-based dynamic capabilities perspective.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su15053948</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2071-1050 |
ispartof | Sustainability, 2023-03, Vol.15 (5), p.3948 |
issn | 2071-1050 2071-1050 |
language | eng |
recordid | cdi_proquest_journals_2785244160 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Analysis Big Data Collaboration Competition Competitive advantage Data analysis Decision making Economic aspects Flexibility Functional integration Influence Information sharing Infrastructure Innovations Knowledge Management Organizational change Strategic management Supply chains Sustainability Technological innovations |
title | How to Leverage Big Data Analytic Capabilities for Innovation Ambidexterity: A Mediated Moderation Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T08%3A45%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Leverage%20Big%20Data%20Analytic%20Capabilities%20for%20Innovation%20Ambidexterity:%20A%20Mediated%20Moderation%20Model&rft.jtitle=Sustainability&rft.au=Liao,%20Suqin&rft.date=2023-03-01&rft.volume=15&rft.issue=5&rft.spage=3948&rft.pages=3948-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su15053948&rft_dat=%3Cgale_proqu%3EA741843172%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785244160&rft_id=info:pmid/&rft_galeid=A741843172&rfr_iscdi=true |