The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition
Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2023-04, Vol.65 (2), p.277-301 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 301 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | Journal of mathematical imaging and vision |
container_volume | 65 |
creator | Hjouji, Amal EL-Mekkaoui, Jaouad |
description | Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property «
p-orthogonality
» and «
p-orthogonal moments
». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is
2-orthogonal
. Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments (
2
ORSMs), the set of orthogonal radial shape moments (
1
ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments (
2
MRSMs) and the set of multi-channel orthogonal radial shape moments (
1
MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis. |
doi_str_mv | 10.1007/s10851-022-01113-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785241773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg_fgDngKeo3n52OwepfhRqBRqPUqITbLd0m7WZHvovzftCnry9Jj3ZoZ5g9AN0DugVN0noKUEQhkjFAA42Z-gEUjFiSpKfopGtGKCVBVV5-gipTWltGSgRuhjsXKYkVnsV6EOrdlg01r8B86NbfJ4W5nO4dewdW2fsA8RT7amdnjuuuhSXpq-Ce1RPHfLULfNAV-hM282yV3_zEv0_vS4GL-Q6ex5Mn6YkiVTtCdljlNIaStVem9NTmk9N1IIAYwpy4ViUCjpxSd4K1VRVSDzwVdMivx4wS_R7eDbxfC1c6nX67CLOX7STJWSCVCKZxYbWMsYUorO6y42WxP3Gqg-1KiHGnWuUR9r1Pss4oMoZXJbu_hr_Y_qG2fWdAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785241773</pqid></control><display><type>article</type><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hjouji, Amal ; EL-Mekkaoui, Jaouad</creator><creatorcontrib>Hjouji, Amal ; EL-Mekkaoui, Jaouad</creatorcontrib><description>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property «
p-orthogonality
» and «
p-orthogonal moments
». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is
2-orthogonal
. Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments (
2
ORSMs), the set of orthogonal radial shape moments (
1
ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments (
2
MRSMs) and the set of multi-channel orthogonal radial shape moments (
1
MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-022-01113-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Color imagery ; Comparative studies ; Computer Science ; Feature extraction ; Finite element method ; Geometric transformation ; Image analysis ; Image Processing and Computer Vision ; Invariants ; Mathematical analysis ; Mathematical Methods in Physics ; Orthogonality ; Pattern recognition ; Representations ; Rotation ; Shape functions ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2023-04, Vol.65 (2), p.277-301</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-022-01113-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-022-01113-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property «
p-orthogonality
» and «
p-orthogonal moments
». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is
2-orthogonal
. Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments (
2
ORSMs), the set of orthogonal radial shape moments (
1
ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments (
2
MRSMs) and the set of multi-channel orthogonal radial shape moments (
1
MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</description><subject>Applications of Mathematics</subject><subject>Color imagery</subject><subject>Comparative studies</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Finite element method</subject><subject>Geometric transformation</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Orthogonality</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Rotation</subject><subject>Shape functions</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJg_fgDngKeo3n52OwepfhRqBRqPUqITbLd0m7WZHvovzftCnry9Jj3ZoZ5g9AN0DugVN0noKUEQhkjFAA42Z-gEUjFiSpKfopGtGKCVBVV5-gipTWltGSgRuhjsXKYkVnsV6EOrdlg01r8B86NbfJ4W5nO4dewdW2fsA8RT7amdnjuuuhSXpq-Ce1RPHfLULfNAV-hM282yV3_zEv0_vS4GL-Q6ex5Mn6YkiVTtCdljlNIaStVem9NTmk9N1IIAYwpy4ViUCjpxSd4K1VRVSDzwVdMivx4wS_R7eDbxfC1c6nX67CLOX7STJWSCVCKZxYbWMsYUorO6y42WxP3Gqg-1KiHGnWuUR9r1Pss4oMoZXJbu_hr_Y_qG2fWdAE</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Hjouji, Amal</creator><creator>EL-Mekkaoui, Jaouad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><author>Hjouji, Amal ; EL-Mekkaoui, Jaouad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Color imagery</topic><topic>Comparative studies</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Finite element method</topic><topic>Geometric transformation</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Orthogonality</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Rotation</topic><topic>Shape functions</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hjouji, Amal</au><au>EL-Mekkaoui, Jaouad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>65</volume><issue>2</issue><spage>277</spage><epage>301</epage><pages>277-301</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property «
p-orthogonality
» and «
p-orthogonal moments
». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is
2-orthogonal
. Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments (
2
ORSMs), the set of orthogonal radial shape moments (
1
ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments (
2
MRSMs) and the set of multi-channel orthogonal radial shape moments (
1
MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-022-01113-y</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2023-04, Vol.65 (2), p.277-301 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_proquest_journals_2785241773 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Color imagery Comparative studies Computer Science Feature extraction Finite element method Geometric transformation Image analysis Image Processing and Computer Vision Invariants Mathematical analysis Mathematical Methods in Physics Orthogonality Pattern recognition Representations Rotation Shape functions Signal,Image and Speech Processing |
title | The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202-Orthogonal%20and%20Orthogonal%20Radial%20Shape%20Moments%20for%20Image%20Representation%20and%20Recognition&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Hjouji,%20Amal&rft.date=2023-04-01&rft.volume=65&rft.issue=2&rft.spage=277&rft.epage=301&rft.pages=277-301&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-022-01113-y&rft_dat=%3Cproquest_cross%3E2785241773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785241773&rft_id=info:pmid/&rfr_iscdi=true |