The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition

Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2023-04, Vol.65 (2), p.277-301
Hauptverfasser: Hjouji, Amal, EL-Mekkaoui, Jaouad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 301
container_issue 2
container_start_page 277
container_title Journal of mathematical imaging and vision
container_volume 65
creator Hjouji, Amal
EL-Mekkaoui, Jaouad
description Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property « p-orthogonality » and « p-orthogonal moments ». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is 2-orthogonal . Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments ( 2 ORSMs), the set of orthogonal radial shape moments ( 1 ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments ( 2 MRSMs) and the set of multi-channel orthogonal radial shape moments ( 1 MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.
doi_str_mv 10.1007/s10851-022-01113-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785241773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785241773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</originalsourceid><addsrcrecordid>eNp9UE1LAzEUDKJg_fgDngKeo3n52OwepfhRqBRqPUqITbLd0m7WZHvovzftCnry9Jj3ZoZ5g9AN0DugVN0noKUEQhkjFAA42Z-gEUjFiSpKfopGtGKCVBVV5-gipTWltGSgRuhjsXKYkVnsV6EOrdlg01r8B86NbfJ4W5nO4dewdW2fsA8RT7amdnjuuuhSXpq-Ce1RPHfLULfNAV-hM282yV3_zEv0_vS4GL-Q6ex5Mn6YkiVTtCdljlNIaStVem9NTmk9N1IIAYwpy4ViUCjpxSd4K1VRVSDzwVdMivx4wS_R7eDbxfC1c6nX67CLOX7STJWSCVCKZxYbWMsYUorO6y42WxP3Gqg-1KiHGnWuUR9r1Pss4oMoZXJbu_hr_Y_qG2fWdAE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785241773</pqid></control><display><type>article</type><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hjouji, Amal ; EL-Mekkaoui, Jaouad</creator><creatorcontrib>Hjouji, Amal ; EL-Mekkaoui, Jaouad</creatorcontrib><description>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property « p-orthogonality » and « p-orthogonal moments ». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is 2-orthogonal . Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments ( 2 ORSMs), the set of orthogonal radial shape moments ( 1 ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments ( 2 MRSMs) and the set of multi-channel orthogonal radial shape moments ( 1 MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-022-01113-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Color imagery ; Comparative studies ; Computer Science ; Feature extraction ; Finite element method ; Geometric transformation ; Image analysis ; Image Processing and Computer Vision ; Invariants ; Mathematical analysis ; Mathematical Methods in Physics ; Orthogonality ; Pattern recognition ; Representations ; Rotation ; Shape functions ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2023-04, Vol.65 (2), p.277-301</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-022-01113-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-022-01113-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><description>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property « p-orthogonality » and « p-orthogonal moments ». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is 2-orthogonal . Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments ( 2 ORSMs), the set of orthogonal radial shape moments ( 1 ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments ( 2 MRSMs) and the set of multi-channel orthogonal radial shape moments ( 1 MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</description><subject>Applications of Mathematics</subject><subject>Color imagery</subject><subject>Comparative studies</subject><subject>Computer Science</subject><subject>Feature extraction</subject><subject>Finite element method</subject><subject>Geometric transformation</subject><subject>Image analysis</subject><subject>Image Processing and Computer Vision</subject><subject>Invariants</subject><subject>Mathematical analysis</subject><subject>Mathematical Methods in Physics</subject><subject>Orthogonality</subject><subject>Pattern recognition</subject><subject>Representations</subject><subject>Rotation</subject><subject>Shape functions</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEUDKJg_fgDngKeo3n52OwepfhRqBRqPUqITbLd0m7WZHvovzftCnry9Jj3ZoZ5g9AN0DugVN0noKUEQhkjFAA42Z-gEUjFiSpKfopGtGKCVBVV5-gipTWltGSgRuhjsXKYkVnsV6EOrdlg01r8B86NbfJ4W5nO4dewdW2fsA8RT7amdnjuuuhSXpq-Ce1RPHfLULfNAV-hM282yV3_zEv0_vS4GL-Q6ex5Mn6YkiVTtCdljlNIaStVem9NTmk9N1IIAYwpy4ViUCjpxSd4K1VRVSDzwVdMivx4wS_R7eDbxfC1c6nX67CLOX7STJWSCVCKZxYbWMsYUorO6y42WxP3Gqg-1KiHGnWuUR9r1Pss4oMoZXJbu_hr_Y_qG2fWdAE</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Hjouji, Amal</creator><creator>EL-Mekkaoui, Jaouad</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230401</creationdate><title>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</title><author>Hjouji, Amal ; EL-Mekkaoui, Jaouad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8000655d978ffda907df3a54441227d34721675f4b1fd5769915227f925410863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Color imagery</topic><topic>Comparative studies</topic><topic>Computer Science</topic><topic>Feature extraction</topic><topic>Finite element method</topic><topic>Geometric transformation</topic><topic>Image analysis</topic><topic>Image Processing and Computer Vision</topic><topic>Invariants</topic><topic>Mathematical analysis</topic><topic>Mathematical Methods in Physics</topic><topic>Orthogonality</topic><topic>Pattern recognition</topic><topic>Representations</topic><topic>Rotation</topic><topic>Shape functions</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hjouji, Amal</creatorcontrib><creatorcontrib>EL-Mekkaoui, Jaouad</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hjouji, Amal</au><au>EL-Mekkaoui, Jaouad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>65</volume><issue>2</issue><spage>277</spage><epage>301</epage><pages>277-301</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>Images recognition require an extraction technique of feature vectors of these images. These vectors must be invariant to the three geometric transformations: rotation, translation and scaling. In this context, there are several authors who used the theory of orthogonal moments, which are become an indispensable tool in a wide range of pattern recognition applications. In this paper, we generalize the notions of orthogonality and orthogonal moments by introducing the property « p-orthogonality » and « p-orthogonal moments ». We show that a p-orthogonal set of functions is composed of p orthogonal subsets. We prove that the set of linear shape functions or hat functions, used in the finite element method (FEM), is 2-orthogonal . Based in these functions we present four types of moments: the set of 2-orthogonal radial shape moments ( 2 ORSMs), the set of orthogonal radial shape moments ( 1 ORSMs) for gray-level images, the set of multi-channel 2-orthogonal radial shape moments ( 2 MRSMs) and the set of multi-channel orthogonal radial shape moments ( 1 MRSMs) for color images. Invariants to translation, scaling and rotation (TSR) of the four proposed moments are derived for image representation and recognition. We present a set of numerical experiments in the field of classification and pattern recognition to evaluate the performance of the proposed invariant moments. From a comparative study with the recent invariant moments, we conclude that our approach is very promising in the pattern recognition field and image analysis.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10851-022-01113-y</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2023-04, Vol.65 (2), p.277-301
issn 0924-9907
1573-7683
language eng
recordid cdi_proquest_journals_2785241773
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Color imagery
Comparative studies
Computer Science
Feature extraction
Finite element method
Geometric transformation
Image analysis
Image Processing and Computer Vision
Invariants
Mathematical analysis
Mathematical Methods in Physics
Orthogonality
Pattern recognition
Representations
Rotation
Shape functions
Signal,Image and Speech Processing
title The 2-Orthogonal and Orthogonal Radial Shape Moments for Image Representation and Recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A31%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202-Orthogonal%20and%20Orthogonal%20Radial%20Shape%20Moments%20for%20Image%20Representation%20and%20Recognition&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Hjouji,%20Amal&rft.date=2023-04-01&rft.volume=65&rft.issue=2&rft.spage=277&rft.epage=301&rft.pages=277-301&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-022-01113-y&rft_dat=%3Cproquest_cross%3E2785241773%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785241773&rft_id=info:pmid/&rfr_iscdi=true