New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics

This paper focuses on a new error analysis and a recovering technique of frequently-used mixed FEMs for a dynamical incompressible magnetohydrodynamics (MHD) system. The methods use the standard inf-sup stable Taylor–Hood/MINI velocity-pressure space pairs to solve the Navier–Stokes equations and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2023-03, Vol.153 (2-3), p.327-358
Hauptverfasser: Gao, Huadong, Qiu, Weifeng, Sun, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 358
container_issue 2-3
container_start_page 327
container_title Numerische Mathematik
container_volume 153
creator Gao, Huadong
Qiu, Weifeng
Sun, Weiwei
description This paper focuses on a new error analysis and a recovering technique of frequently-used mixed FEMs for a dynamical incompressible magnetohydrodynamics (MHD) system. The methods use the standard inf-sup stable Taylor–Hood/MINI velocity-pressure space pairs to solve the Navier–Stokes equations and the Nédélec’s edge element for solving the magnetic field. We establish new and optimal error estimates. In particular, we prove that the method provides the optimal accuracy for the MINI element in L 2 -norm and for the Taylor-Hood element in H 1 -norm. The analysis is based on a modified Maxwell projection and the corresponding estimates in negative norms, while all the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order Nédélec’s edge approximation in analysis. In addition, at any given time step, we develop a simple recovery technique for numerical approximation to the magnetic field of one order higher accuracy in the spatial direction.
doi_str_mv 10.1007/s00211-022-01341-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785241413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785241413</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-ef79d39faad771bdcac8e66b05b2684780ccb242434ef32c761388d5aa7a62a63</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5gsMRv8lTgeUdUCUoEFJDbLceySKomLXyrIvyeQSmxM7w7nXukdhC4ZvWaUqhuglDNGKOeEMiEZ0UdoRrXMiOAyOx4z5ZpkWr-dojOALaVM5ZLN0PrJf2Lb2WaAGnAMuK2_fIVXy0fAISZcDZ1ta2cbXHcutrvkAeqy8bi1m8738X2oUjxAcI5Ogm3AXxzuHL2uli-Le7J-vntY3K6J41L3xAelK6GDtZVSrKycdYXP85JmJc8LqQrqXMkll0L6ILhTORNFUWXWKptzm4s5upp2dyl-7D30Zhv3aXwCDFdFxiWTTIwUnyiXIkDywexS3do0GEbNjzUzWTOjNfNrzeixJKYSjHC38elv-p_WN9ZQcEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785241413</pqid></control><display><type>article</type><title>New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Huadong ; Qiu, Weifeng ; Sun, Weiwei</creator><creatorcontrib>Gao, Huadong ; Qiu, Weifeng ; Sun, Weiwei</creatorcontrib><description>This paper focuses on a new error analysis and a recovering technique of frequently-used mixed FEMs for a dynamical incompressible magnetohydrodynamics (MHD) system. The methods use the standard inf-sup stable Taylor–Hood/MINI velocity-pressure space pairs to solve the Navier–Stokes equations and the Nédélec’s edge element for solving the magnetic field. We establish new and optimal error estimates. In particular, we prove that the method provides the optimal accuracy for the MINI element in L 2 -norm and for the Taylor-Hood element in H 1 -norm. The analysis is based on a modified Maxwell projection and the corresponding estimates in negative norms, while all the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order Nédélec’s edge approximation in analysis. In addition, at any given time step, we develop a simple recovery technique for numerical approximation to the magnetic field of one order higher accuracy in the spatial direction.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-022-01341-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Error analysis ; Estimates ; Magnetic fields ; Magnetohydrodynamics ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Norms ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2023-03, Vol.153 (2-3), p.327-358</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-ef79d39faad771bdcac8e66b05b2684780ccb242434ef32c761388d5aa7a62a63</citedby><cites>FETCH-LOGICAL-c249t-ef79d39faad771bdcac8e66b05b2684780ccb242434ef32c761388d5aa7a62a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-022-01341-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-022-01341-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Gao, Huadong</creatorcontrib><creatorcontrib>Qiu, Weifeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><title>New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>This paper focuses on a new error analysis and a recovering technique of frequently-used mixed FEMs for a dynamical incompressible magnetohydrodynamics (MHD) system. The methods use the standard inf-sup stable Taylor–Hood/MINI velocity-pressure space pairs to solve the Navier–Stokes equations and the Nédélec’s edge element for solving the magnetic field. We establish new and optimal error estimates. In particular, we prove that the method provides the optimal accuracy for the MINI element in L 2 -norm and for the Taylor-Hood element in H 1 -norm. The analysis is based on a modified Maxwell projection and the corresponding estimates in negative norms, while all the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order Nédélec’s edge approximation in analysis. In addition, at any given time step, we develop a simple recovery technique for numerical approximation to the magnetic field of one order higher accuracy in the spatial direction.</description><subject>Approximation</subject><subject>Error analysis</subject><subject>Estimates</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5gsMRv8lTgeUdUCUoEFJDbLceySKomLXyrIvyeQSmxM7w7nXukdhC4ZvWaUqhuglDNGKOeEMiEZ0UdoRrXMiOAyOx4z5ZpkWr-dojOALaVM5ZLN0PrJf2Lb2WaAGnAMuK2_fIVXy0fAISZcDZ1ta2cbXHcutrvkAeqy8bi1m8738X2oUjxAcI5Ogm3AXxzuHL2uli-Le7J-vntY3K6J41L3xAelK6GDtZVSrKycdYXP85JmJc8LqQrqXMkll0L6ILhTORNFUWXWKptzm4s5upp2dyl-7D30Zhv3aXwCDFdFxiWTTIwUnyiXIkDywexS3do0GEbNjzUzWTOjNfNrzeixJKYSjHC38elv-p_WN9ZQcEQ</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Gao, Huadong</creator><creator>Qiu, Weifeng</creator><creator>Sun, Weiwei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230301</creationdate><title>New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics</title><author>Gao, Huadong ; Qiu, Weifeng ; Sun, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-ef79d39faad771bdcac8e66b05b2684780ccb242434ef32c761388d5aa7a62a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Approximation</topic><topic>Error analysis</topic><topic>Estimates</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Huadong</creatorcontrib><creatorcontrib>Qiu, Weifeng</creatorcontrib><creatorcontrib>Sun, Weiwei</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Huadong</au><au>Qiu, Weifeng</au><au>Sun, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2023-03-01</date><risdate>2023</risdate><volume>153</volume><issue>2-3</issue><spage>327</spage><epage>358</epage><pages>327-358</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>This paper focuses on a new error analysis and a recovering technique of frequently-used mixed FEMs for a dynamical incompressible magnetohydrodynamics (MHD) system. The methods use the standard inf-sup stable Taylor–Hood/MINI velocity-pressure space pairs to solve the Navier–Stokes equations and the Nédélec’s edge element for solving the magnetic field. We establish new and optimal error estimates. In particular, we prove that the method provides the optimal accuracy for the MINI element in L 2 -norm and for the Taylor-Hood element in H 1 -norm. The analysis is based on a modified Maxwell projection and the corresponding estimates in negative norms, while all the existing analysis is not optimal due to the strong coupling of system and the pollution of the lower-order Nédélec’s edge approximation in analysis. In addition, at any given time step, we develop a simple recovery technique for numerical approximation to the magnetic field of one order higher accuracy in the spatial direction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-022-01341-9</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2023-03, Vol.153 (2-3), p.327-358
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2785241413
source SpringerLink Journals - AutoHoldings
subjects Approximation
Error analysis
Estimates
Magnetic fields
Magnetohydrodynamics
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Norms
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20analysis%20of%20mixed%20FEMs%20for%20dynamical%20incompressible%20magnetohydrodynamics&rft.jtitle=Numerische%20Mathematik&rft.au=Gao,%20Huadong&rft.date=2023-03-01&rft.volume=153&rft.issue=2-3&rft.spage=327&rft.epage=358&rft.pages=327-358&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-022-01341-9&rft_dat=%3Cproquest_cross%3E2785241413%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785241413&rft_id=info:pmid/&rfr_iscdi=true