24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex

High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc), a hinge‐type fluorine‐rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-03, Vol.33 (11), p.n/a
Hauptverfasser: Li, Zhijun, Wu, Meizi, Yang, Lu, Guo, Kunpeng, Duan, Yuwei, Li, Yong, He, Kun, Xing, Yifan, Zhang, Zheng, Zhou, Hui, Xu, Dongfang, Wang, Jungang, Zou, Hong, Li, Da, Liu, Zhike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced functional materials
container_volume 33
creator Li, Zhijun
Wu, Meizi
Yang, Lu
Guo, Kunpeng
Duan, Yuwei
Li, Yong
He, Kun
Xing, Yifan
Zhang, Zheng
Zhou, Hui
Xu, Dongfang
Wang, Jungang
Zou, Hong
Li, Da
Liu, Zhike
description High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc), a hinge‐type fluorine‐rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro‐OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole‐transport kinetics via interacting with Spiro‐OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open‐circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic‐inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc‐modified devices exhibit an outstanding long‐term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation. A hinge‐type fluorine‐rich complex cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc) is developed to optimize the interface of FACsPbI3/Spiro‐OMeTAD, which can passivate both organic cations and halide anion vacancies on perovskite surface, and enhance interfacial hole‐transport kinetics by interaction with Spiro‐OMeTAD. Consequently, CoFAc‐modified FACsPbI3 solar cells yield a respectable PCE of 24.64%, a record Voc of 1.191 V, and excellent stability.
doi_str_mv 10.1002/adfm.202212606
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2785195100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785195100</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2336-dedc414f85eed2d8cfcd048be7d687ad026dd125f131bc12d78dd7c1c406e1553</originalsourceid><addsrcrecordid>eNo9kMFKw0AURQdRsFa3rgfEZeO8STJJlyU2VmhRtBZ3IZl5Y6emmZi01uz8BD_Bb_FT_BJTKl29e-ByHxxCzoE5wBi_SpVeOpxxDlwwcUA6IED0XMbDw32G52NyUtcLxiAIXK9DGu45wrv8_fwaam2kwUI2dDJoOa4Q6T1W9r1-NSukjzZPKxphntONWc3pzEpqNQUH-j_fMzos0ixHRbOGpnRkihdsN6ZNiTTO17YyxZYfjJzTyC7LHD9OyZFO8xrP_m-XPMXDaTTqje9ubqPBuFdy1xU9hUp64OnQR1RchVJLxbwww0CJMEgV40Ip4L4GFzIJXAWhUoEE6TGB4Ptul1zsdsvKvq2xXiULu66K9mXCg9CHvt_aa1v9XWtjcmySsjLLtGoSYMnWbbJ1m-zdJoPreLIn9w8FkHLG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785195100</pqid></control><display><type>article</type><title>24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zhijun ; Wu, Meizi ; Yang, Lu ; Guo, Kunpeng ; Duan, Yuwei ; Li, Yong ; He, Kun ; Xing, Yifan ; Zhang, Zheng ; Zhou, Hui ; Xu, Dongfang ; Wang, Jungang ; Zou, Hong ; Li, Da ; Liu, Zhike</creator><creatorcontrib>Li, Zhijun ; Wu, Meizi ; Yang, Lu ; Guo, Kunpeng ; Duan, Yuwei ; Li, Yong ; He, Kun ; Xing, Yifan ; Zhang, Zheng ; Zhou, Hui ; Xu, Dongfang ; Wang, Jungang ; Zou, Hong ; Li, Da ; Liu, Zhike</creatorcontrib><description>High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc), a hinge‐type fluorine‐rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro‐OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole‐transport kinetics via interacting with Spiro‐OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open‐circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic‐inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc‐modified devices exhibit an outstanding long‐term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation. A hinge‐type fluorine‐rich complex cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc) is developed to optimize the interface of FACsPbI3/Spiro‐OMeTAD, which can passivate both organic cations and halide anion vacancies on perovskite surface, and enhance interfacial hole‐transport kinetics by interaction with Spiro‐OMeTAD. Consequently, CoFAc‐modified FACsPbI3 solar cells yield a respectable PCE of 24.64%, a record Voc of 1.191 V, and excellent stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202212606</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Bonding strength ; Cesium ; Circuits ; Electron transport ; Energy conversion efficiency ; Fluorine ; fluorine‐rich complexes ; hinge‐type ; Hydrogen bonds ; interfaces ; Materials science ; passivate ; perovskite solar cells ; Perovskites ; Photovoltaic cells ; Solar cells ; Titanium dioxide</subject><ispartof>Advanced functional materials, 2023-03, Vol.33 (11), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2075-6000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202212606$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202212606$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Wu, Meizi</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Guo, Kunpeng</creatorcontrib><creatorcontrib>Duan, Yuwei</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Xing, Yifan</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Xu, Dongfang</creatorcontrib><creatorcontrib>Wang, Jungang</creatorcontrib><creatorcontrib>Zou, Hong</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Zhike</creatorcontrib><title>24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex</title><title>Advanced functional materials</title><description>High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc), a hinge‐type fluorine‐rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro‐OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole‐transport kinetics via interacting with Spiro‐OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open‐circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic‐inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc‐modified devices exhibit an outstanding long‐term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation. A hinge‐type fluorine‐rich complex cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc) is developed to optimize the interface of FACsPbI3/Spiro‐OMeTAD, which can passivate both organic cations and halide anion vacancies on perovskite surface, and enhance interfacial hole‐transport kinetics by interaction with Spiro‐OMeTAD. Consequently, CoFAc‐modified FACsPbI3 solar cells yield a respectable PCE of 24.64%, a record Voc of 1.191 V, and excellent stability.</description><subject>Bonding strength</subject><subject>Cesium</subject><subject>Circuits</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Fluorine</subject><subject>fluorine‐rich complexes</subject><subject>hinge‐type</subject><subject>Hydrogen bonds</subject><subject>interfaces</subject><subject>Materials science</subject><subject>passivate</subject><subject>perovskite solar cells</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Titanium dioxide</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKw0AURQdRsFa3rgfEZeO8STJJlyU2VmhRtBZ3IZl5Y6emmZi01uz8BD_Bb_FT_BJTKl29e-ByHxxCzoE5wBi_SpVeOpxxDlwwcUA6IED0XMbDw32G52NyUtcLxiAIXK9DGu45wrv8_fwaam2kwUI2dDJoOa4Q6T1W9r1-NSukjzZPKxphntONWc3pzEpqNQUH-j_fMzos0ixHRbOGpnRkihdsN6ZNiTTO17YyxZYfjJzTyC7LHD9OyZFO8xrP_m-XPMXDaTTqje9ubqPBuFdy1xU9hUp64OnQR1RchVJLxbwww0CJMEgV40Ip4L4GFzIJXAWhUoEE6TGB4Ptul1zsdsvKvq2xXiULu66K9mXCg9CHvt_aa1v9XWtjcmySsjLLtGoSYMnWbbJ1m-zdJoPreLIn9w8FkHLG</recordid><startdate>20230309</startdate><enddate>20230309</enddate><creator>Li, Zhijun</creator><creator>Wu, Meizi</creator><creator>Yang, Lu</creator><creator>Guo, Kunpeng</creator><creator>Duan, Yuwei</creator><creator>Li, Yong</creator><creator>He, Kun</creator><creator>Xing, Yifan</creator><creator>Zhang, Zheng</creator><creator>Zhou, Hui</creator><creator>Xu, Dongfang</creator><creator>Wang, Jungang</creator><creator>Zou, Hong</creator><creator>Li, Da</creator><creator>Liu, Zhike</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2075-6000</orcidid></search><sort><creationdate>20230309</creationdate><title>24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex</title><author>Li, Zhijun ; Wu, Meizi ; Yang, Lu ; Guo, Kunpeng ; Duan, Yuwei ; Li, Yong ; He, Kun ; Xing, Yifan ; Zhang, Zheng ; Zhou, Hui ; Xu, Dongfang ; Wang, Jungang ; Zou, Hong ; Li, Da ; Liu, Zhike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2336-dedc414f85eed2d8cfcd048be7d687ad026dd125f131bc12d78dd7c1c406e1553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bonding strength</topic><topic>Cesium</topic><topic>Circuits</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Fluorine</topic><topic>fluorine‐rich complexes</topic><topic>hinge‐type</topic><topic>Hydrogen bonds</topic><topic>interfaces</topic><topic>Materials science</topic><topic>passivate</topic><topic>perovskite solar cells</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhijun</creatorcontrib><creatorcontrib>Wu, Meizi</creatorcontrib><creatorcontrib>Yang, Lu</creatorcontrib><creatorcontrib>Guo, Kunpeng</creatorcontrib><creatorcontrib>Duan, Yuwei</creatorcontrib><creatorcontrib>Li, Yong</creatorcontrib><creatorcontrib>He, Kun</creatorcontrib><creatorcontrib>Xing, Yifan</creatorcontrib><creatorcontrib>Zhang, Zheng</creatorcontrib><creatorcontrib>Zhou, Hui</creatorcontrib><creatorcontrib>Xu, Dongfang</creatorcontrib><creatorcontrib>Wang, Jungang</creatorcontrib><creatorcontrib>Zou, Hong</creatorcontrib><creatorcontrib>Li, Da</creatorcontrib><creatorcontrib>Liu, Zhike</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhijun</au><au>Wu, Meizi</au><au>Yang, Lu</au><au>Guo, Kunpeng</au><au>Duan, Yuwei</au><au>Li, Yong</au><au>He, Kun</au><au>Xing, Yifan</au><au>Zhang, Zheng</au><au>Zhou, Hui</au><au>Xu, Dongfang</au><au>Wang, Jungang</au><au>Zou, Hong</au><au>Li, Da</au><au>Liu, Zhike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex</atitle><jtitle>Advanced functional materials</jtitle><date>2023-03-09</date><risdate>2023</risdate><volume>33</volume><issue>11</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc), a hinge‐type fluorine‐rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro‐OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole‐transport kinetics via interacting with Spiro‐OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open‐circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic‐inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc‐modified devices exhibit an outstanding long‐term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation. A hinge‐type fluorine‐rich complex cobalt (II) hexafluoro‐2,4‐pentanedionat (CoFAc) is developed to optimize the interface of FACsPbI3/Spiro‐OMeTAD, which can passivate both organic cations and halide anion vacancies on perovskite surface, and enhance interfacial hole‐transport kinetics by interaction with Spiro‐OMeTAD. Consequently, CoFAc‐modified FACsPbI3 solar cells yield a respectable PCE of 24.64%, a record Voc of 1.191 V, and excellent stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202212606</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2075-6000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-03, Vol.33 (11), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2785195100
source Wiley Online Library Journals Frontfile Complete
subjects Bonding strength
Cesium
Circuits
Electron transport
Energy conversion efficiency
Fluorine
fluorine‐rich complexes
hinge‐type
Hydrogen bonds
interfaces
Materials science
passivate
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Titanium dioxide
title 24.64%‐Efficiency MA‐Free Perovskite Solar Cell with Voc of 1.19 V Enabled by a Hinge‐Type Fluorine‐Rich Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A38%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=24.64%25%E2%80%90Efficiency%20MA%E2%80%90Free%20Perovskite%20Solar%20Cell%20with%20Voc%20of%201.19%C2%A0V%20Enabled%20by%20a%20Hinge%E2%80%90Type%20Fluorine%E2%80%90Rich%20Complex&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Zhijun&rft.date=2023-03-09&rft.volume=33&rft.issue=11&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202212606&rft_dat=%3Cproquest_wiley%3E2785195100%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785195100&rft_id=info:pmid/&rfr_iscdi=true