Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network

A cancer diagnosis is one of the most difficult medical challenges. Leukemia is a type of cancer that affects the bone marrow and/or blood and accounts for approximately 8% of all cancers. Understanding the epidemiology and trends of leukemia is critical for planning. Specialists diagnose leukemia u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2023-03, Vol.12 (5), p.1116
Hauptverfasser: Ansari, Sanam, Navin, Ahmad Habibizad, Babazadeh Sangar, Amin, Vaez Gharamaleki, Jalil, Danishvar, Sebelan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1116
container_title Electronics (Basel)
container_volume 12
creator Ansari, Sanam
Navin, Ahmad Habibizad
Babazadeh Sangar, Amin
Vaez Gharamaleki, Jalil
Danishvar, Sebelan
description A cancer diagnosis is one of the most difficult medical challenges. Leukemia is a type of cancer that affects the bone marrow and/or blood and accounts for approximately 8% of all cancers. Understanding the epidemiology and trends of leukemia is critical for planning. Specialists diagnose leukemia using morphological analysis, but there is a possibility of error in diagnosis. Since leukemia is so difficult to diagnose, intelligent methods of diagnosis are required. The primary goal of this study is to develop a novel method for extracting features hierarchically and accurately, in order to diagnose various types of acute leukemia. This method distinguishes between acute leukemia types, namely Acute Lymphocytic Leukemia (ALL) and Acute Myeloid Leukemia (AML), by distinguishing lymphocytes from monocytes. The images used in this study are obtained from the Shahid Ghazi Tabatabai Oncology Center in Tabriz. A type-II fuzzy deep network is designed for this purpose. The proposed model has an accuracy of 98.8% and an F1-score of 98.9%, respectively. The results show that the proposed method has a high diagnostic performance. Furthermore, the proposed method has the ability to generalize more satisfactorily and has a stronger learning performance than other methods.
doi_str_mv 10.3390/electronics12051116
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2785187415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741740098</galeid><sourcerecordid>A741740098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e8cb2f701c9145798668227982b924d59397e70fa0d6b9a2527e3cda4f9bb30c3</originalsourceid><addsrcrecordid>eNptUU1LxDAQLaKg6P4CLwHPXfPRbprj-rG6UPXinkuaTmp0m9SkRbq_3ogLKjhzmHnDezPwJknOCZ4zJvAlbEEN3lmjAqE4J4QsDpITirlIBRX08Fd_nMxCeMUxBGEFwyeJXqpxAFTC-AadkejGyNa6YAK6kgEa5Cxad7KFgJxG5dT1L05NQ4TSNujB2T3aBGNb9Dz1kK7XaDXudhO6AejRIwwfzr-dJUdabgPM9vU02axun6_v0_Lpbn29LFPFCjGkUKiaao6JEiTLuSgWi4LSWGktaNbkggkOHGuJm0UtJM0pB6YamWlR1wwrdppcfO_tvXsfIQzVqxu9jScryoucFDwj-Q-rlVuojNVu8FJ1JqhqGQk8i_4UkTX_hxWziU4pZ0GbOP8jYN8C5V0IHnTVe9NJP1UEV1-vqv55FfsE3AqH1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785187415</pqid></control><display><type>article</type><title>Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ansari, Sanam ; Navin, Ahmad Habibizad ; Babazadeh Sangar, Amin ; Vaez Gharamaleki, Jalil ; Danishvar, Sebelan</creator><creatorcontrib>Ansari, Sanam ; Navin, Ahmad Habibizad ; Babazadeh Sangar, Amin ; Vaez Gharamaleki, Jalil ; Danishvar, Sebelan</creatorcontrib><description>A cancer diagnosis is one of the most difficult medical challenges. Leukemia is a type of cancer that affects the bone marrow and/or blood and accounts for approximately 8% of all cancers. Understanding the epidemiology and trends of leukemia is critical for planning. Specialists diagnose leukemia using morphological analysis, but there is a possibility of error in diagnosis. Since leukemia is so difficult to diagnose, intelligent methods of diagnosis are required. The primary goal of this study is to develop a novel method for extracting features hierarchically and accurately, in order to diagnose various types of acute leukemia. This method distinguishes between acute leukemia types, namely Acute Lymphocytic Leukemia (ALL) and Acute Myeloid Leukemia (AML), by distinguishing lymphocytes from monocytes. The images used in this study are obtained from the Shahid Ghazi Tabatabai Oncology Center in Tabriz. A type-II fuzzy deep network is designed for this purpose. The proposed model has an accuracy of 98.8% and an F1-score of 98.9%, respectively. The results show that the proposed method has a high diagnostic performance. Furthermore, the proposed method has the ability to generalize more satisfactorily and has a stronger learning performance than other methods.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics12051116</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Acute leukemia ; Algorithms ; Blood ; Bone marrow ; Cancer ; Cancer therapies ; Classification ; Computer-aided medical diagnosis ; Diagnosis ; Disease ; Epidemiology ; Feature extraction ; Health aspects ; Hydrocarbons ; Image processing ; Leukemia ; Lymphocytes ; Machine learning ; Medical imaging ; Methods ; Monocytes ; Morphology ; Neural networks ; Radiation ; Stem cells ; Tumors</subject><ispartof>Electronics (Basel), 2023-03, Vol.12 (5), p.1116</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e8cb2f701c9145798668227982b924d59397e70fa0d6b9a2527e3cda4f9bb30c3</citedby><cites>FETCH-LOGICAL-c389t-e8cb2f701c9145798668227982b924d59397e70fa0d6b9a2527e3cda4f9bb30c3</cites><orcidid>0000-0002-5190-8460 ; 0000-0002-8258-0437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ansari, Sanam</creatorcontrib><creatorcontrib>Navin, Ahmad Habibizad</creatorcontrib><creatorcontrib>Babazadeh Sangar, Amin</creatorcontrib><creatorcontrib>Vaez Gharamaleki, Jalil</creatorcontrib><creatorcontrib>Danishvar, Sebelan</creatorcontrib><title>Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network</title><title>Electronics (Basel)</title><description>A cancer diagnosis is one of the most difficult medical challenges. Leukemia is a type of cancer that affects the bone marrow and/or blood and accounts for approximately 8% of all cancers. Understanding the epidemiology and trends of leukemia is critical for planning. Specialists diagnose leukemia using morphological analysis, but there is a possibility of error in diagnosis. Since leukemia is so difficult to diagnose, intelligent methods of diagnosis are required. The primary goal of this study is to develop a novel method for extracting features hierarchically and accurately, in order to diagnose various types of acute leukemia. This method distinguishes between acute leukemia types, namely Acute Lymphocytic Leukemia (ALL) and Acute Myeloid Leukemia (AML), by distinguishing lymphocytes from monocytes. The images used in this study are obtained from the Shahid Ghazi Tabatabai Oncology Center in Tabriz. A type-II fuzzy deep network is designed for this purpose. The proposed model has an accuracy of 98.8% and an F1-score of 98.9%, respectively. The results show that the proposed method has a high diagnostic performance. Furthermore, the proposed method has the ability to generalize more satisfactorily and has a stronger learning performance than other methods.</description><subject>Accuracy</subject><subject>Acute leukemia</subject><subject>Algorithms</subject><subject>Blood</subject><subject>Bone marrow</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Classification</subject><subject>Computer-aided medical diagnosis</subject><subject>Diagnosis</subject><subject>Disease</subject><subject>Epidemiology</subject><subject>Feature extraction</subject><subject>Health aspects</subject><subject>Hydrocarbons</subject><subject>Image processing</subject><subject>Leukemia</subject><subject>Lymphocytes</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>Monocytes</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Radiation</subject><subject>Stem cells</subject><subject>Tumors</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUU1LxDAQLaKg6P4CLwHPXfPRbprj-rG6UPXinkuaTmp0m9SkRbq_3ogLKjhzmHnDezPwJknOCZ4zJvAlbEEN3lmjAqE4J4QsDpITirlIBRX08Fd_nMxCeMUxBGEFwyeJXqpxAFTC-AadkejGyNa6YAK6kgEa5Cxad7KFgJxG5dT1L05NQ4TSNujB2T3aBGNb9Dz1kK7XaDXudhO6AejRIwwfzr-dJUdabgPM9vU02axun6_v0_Lpbn29LFPFCjGkUKiaao6JEiTLuSgWi4LSWGktaNbkggkOHGuJm0UtJM0pB6YamWlR1wwrdppcfO_tvXsfIQzVqxu9jScryoucFDwj-Q-rlVuojNVu8FJ1JqhqGQk8i_4UkTX_hxWziU4pZ0GbOP8jYN8C5V0IHnTVe9NJP1UEV1-vqv55FfsE3AqH1Q</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Ansari, Sanam</creator><creator>Navin, Ahmad Habibizad</creator><creator>Babazadeh Sangar, Amin</creator><creator>Vaez Gharamaleki, Jalil</creator><creator>Danishvar, Sebelan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-5190-8460</orcidid><orcidid>https://orcid.org/0000-0002-8258-0437</orcidid></search><sort><creationdate>20230301</creationdate><title>Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network</title><author>Ansari, Sanam ; Navin, Ahmad Habibizad ; Babazadeh Sangar, Amin ; Vaez Gharamaleki, Jalil ; Danishvar, Sebelan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e8cb2f701c9145798668227982b924d59397e70fa0d6b9a2527e3cda4f9bb30c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Acute leukemia</topic><topic>Algorithms</topic><topic>Blood</topic><topic>Bone marrow</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Classification</topic><topic>Computer-aided medical diagnosis</topic><topic>Diagnosis</topic><topic>Disease</topic><topic>Epidemiology</topic><topic>Feature extraction</topic><topic>Health aspects</topic><topic>Hydrocarbons</topic><topic>Image processing</topic><topic>Leukemia</topic><topic>Lymphocytes</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>Monocytes</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Radiation</topic><topic>Stem cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ansari, Sanam</creatorcontrib><creatorcontrib>Navin, Ahmad Habibizad</creatorcontrib><creatorcontrib>Babazadeh Sangar, Amin</creatorcontrib><creatorcontrib>Vaez Gharamaleki, Jalil</creatorcontrib><creatorcontrib>Danishvar, Sebelan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ansari, Sanam</au><au>Navin, Ahmad Habibizad</au><au>Babazadeh Sangar, Amin</au><au>Vaez Gharamaleki, Jalil</au><au>Danishvar, Sebelan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network</atitle><jtitle>Electronics (Basel)</jtitle><date>2023-03-01</date><risdate>2023</risdate><volume>12</volume><issue>5</issue><spage>1116</spage><pages>1116-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>A cancer diagnosis is one of the most difficult medical challenges. Leukemia is a type of cancer that affects the bone marrow and/or blood and accounts for approximately 8% of all cancers. Understanding the epidemiology and trends of leukemia is critical for planning. Specialists diagnose leukemia using morphological analysis, but there is a possibility of error in diagnosis. Since leukemia is so difficult to diagnose, intelligent methods of diagnosis are required. The primary goal of this study is to develop a novel method for extracting features hierarchically and accurately, in order to diagnose various types of acute leukemia. This method distinguishes between acute leukemia types, namely Acute Lymphocytic Leukemia (ALL) and Acute Myeloid Leukemia (AML), by distinguishing lymphocytes from monocytes. The images used in this study are obtained from the Shahid Ghazi Tabatabai Oncology Center in Tabriz. A type-II fuzzy deep network is designed for this purpose. The proposed model has an accuracy of 98.8% and an F1-score of 98.9%, respectively. The results show that the proposed method has a high diagnostic performance. Furthermore, the proposed method has the ability to generalize more satisfactorily and has a stronger learning performance than other methods.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics12051116</doi><orcidid>https://orcid.org/0000-0002-5190-8460</orcidid><orcidid>https://orcid.org/0000-0002-8258-0437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2023-03, Vol.12 (5), p.1116
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2785187415
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Accuracy
Acute leukemia
Algorithms
Blood
Bone marrow
Cancer
Cancer therapies
Classification
Computer-aided medical diagnosis
Diagnosis
Disease
Epidemiology
Feature extraction
Health aspects
Hydrocarbons
Image processing
Leukemia
Lymphocytes
Machine learning
Medical imaging
Methods
Monocytes
Morphology
Neural networks
Radiation
Stem cells
Tumors
title Acute Leukemia Diagnosis Based on Images of Lymphocytes and Monocytes Using Type-II Fuzzy Deep Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acute%20Leukemia%20Diagnosis%20Based%20on%20Images%20of%20Lymphocytes%20and%20Monocytes%20Using%20Type-II%20Fuzzy%20Deep%20Network&rft.jtitle=Electronics%20(Basel)&rft.au=Ansari,%20Sanam&rft.date=2023-03-01&rft.volume=12&rft.issue=5&rft.spage=1116&rft.pages=1116-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics12051116&rft_dat=%3Cgale_proqu%3EA741740098%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785187415&rft_id=info:pmid/&rft_galeid=A741740098&rfr_iscdi=true