Vector breathers in the Manakov system
We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two‐component extension of the one‐dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibrea...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2023-04, Vol.150 (3), p.841-882 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 3 |
container_start_page | 841 |
container_title | Studies in applied mathematics (Cambridge) |
container_volume | 150 |
creator | Gelash, Andrey Raskovalov, Anton |
description | We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two‐component extension of the one‐dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two‐component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two‐breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small‐amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process. |
doi_str_mv | 10.1111/sapm.12558 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785187029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785187029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3378-68bf338885f244c03ac0128a9db32dbb94ebb15cd9c92f9e416f13f5ea8385b13</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFcv_oKC4EHoOpM0bXJcFr9gFwU_riFJE9x1t61JV-m_t2s9O5eZwzPvCw8h5whTHOY66nY7Rcq5OCAJ5kWZSS7hkCQAlGaU0-KYnMS4BgAsOSTk8s3ZrgmpCU537y7EdFWnw5Euda0_mq809rFz21Ny5PUmurO_PSGvtzcv8_ts8Xj3MJ8tMstYKbJCGM-YEIJ7mucWmLaAVGhZGUYrY2TujEFuK2kl9dLlWHhknjstmOAG2YRcjLltaD53LnZq3exCPVQqWgqOogQqB-pqpGxoYgzOqzastjr0CkHtPai9B_XrYYBxhL9XG9f_Q6rn2dNy_PkBFatecw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785187029</pqid></control><display><type>article</type><title>Vector breathers in the Manakov system</title><source>Wiley Online Library Journals Frontfile Complete</source><source>EBSCOhost Business Source Complete</source><creator>Gelash, Andrey ; Raskovalov, Anton</creator><creatorcontrib>Gelash, Andrey ; Raskovalov, Anton</creatorcontrib><description>We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two‐component extension of the one‐dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two‐component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two‐breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small‐amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12558</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Breathers ; Collisions ; Eigenvalues ; integrable systems ; modulation instability ; Nonlinearity ; Perturbation ; Resonance ; rogue waves ; Schrodinger equation ; solitons ; Wave propagation</subject><ispartof>Studies in applied mathematics (Cambridge), 2023-04, Vol.150 (3), p.841-882</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3378-68bf338885f244c03ac0128a9db32dbb94ebb15cd9c92f9e416f13f5ea8385b13</citedby><cites>FETCH-LOGICAL-c3378-68bf338885f244c03ac0128a9db32dbb94ebb15cd9c92f9e416f13f5ea8385b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12558$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12558$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gelash, Andrey</creatorcontrib><creatorcontrib>Raskovalov, Anton</creatorcontrib><title>Vector breathers in the Manakov system</title><title>Studies in applied mathematics (Cambridge)</title><description>We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two‐component extension of the one‐dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two‐component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two‐breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small‐amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process.</description><subject>Breathers</subject><subject>Collisions</subject><subject>Eigenvalues</subject><subject>integrable systems</subject><subject>modulation instability</subject><subject>Nonlinearity</subject><subject>Perturbation</subject><subject>Resonance</subject><subject>rogue waves</subject><subject>Schrodinger equation</subject><subject>solitons</subject><subject>Wave propagation</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFcv_oKC4EHoOpM0bXJcFr9gFwU_riFJE9x1t61JV-m_t2s9O5eZwzPvCw8h5whTHOY66nY7Rcq5OCAJ5kWZSS7hkCQAlGaU0-KYnMS4BgAsOSTk8s3ZrgmpCU537y7EdFWnw5Euda0_mq809rFz21Ny5PUmurO_PSGvtzcv8_ts8Xj3MJ8tMstYKbJCGM-YEIJ7mucWmLaAVGhZGUYrY2TujEFuK2kl9dLlWHhknjstmOAG2YRcjLltaD53LnZq3exCPVQqWgqOogQqB-pqpGxoYgzOqzastjr0CkHtPai9B_XrYYBxhL9XG9f_Q6rn2dNy_PkBFatecw</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Gelash, Andrey</creator><creator>Raskovalov, Anton</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>202304</creationdate><title>Vector breathers in the Manakov system</title><author>Gelash, Andrey ; Raskovalov, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3378-68bf338885f244c03ac0128a9db32dbb94ebb15cd9c92f9e416f13f5ea8385b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Breathers</topic><topic>Collisions</topic><topic>Eigenvalues</topic><topic>integrable systems</topic><topic>modulation instability</topic><topic>Nonlinearity</topic><topic>Perturbation</topic><topic>Resonance</topic><topic>rogue waves</topic><topic>Schrodinger equation</topic><topic>solitons</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gelash, Andrey</creatorcontrib><creatorcontrib>Raskovalov, Anton</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gelash, Andrey</au><au>Raskovalov, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vector breathers in the Manakov system</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2023-04</date><risdate>2023</risdate><volume>150</volume><issue>3</issue><spage>841</spage><epage>882</epage><pages>841-882</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>We study theoretically the nonlinear interactions of vector breathers propagating on an unstable wavefield background. As a model, we use the two‐component extension of the one‐dimensional focusing nonlinear Schrödinger equation—the Manakov system. With the dressing method, we generate the multibreather solutions to the Manakov model. As shown previously in [D. Kraus, G. Biondini, and G. Kovačič, Nonlinearity 28(9), 3101, (2015)], the class of vector breathers is presented by three fundamental types I, II, and III. Their interactions produce a broad family of the two‐component (polarized) nonlinear wave patterns. First, we demonstrate that the type I and the types II and III correspond to two different branches of the dispersion law of the Manakov system in the presence of the unstable background. Then, we investigate the key interaction scenarios, including collisions of standing and moving breathers and resonance breather transformations. Analysis of the two‐breather solution allows us to derive general formulas describing phase and space shifts acquired by breathers in mutual collisions. The found expressions enable us to describe the asymptotic states of the breather interactions and interpret the resonance fusion and decay of breathers as a limiting case of infinite space shift in the case of merging breather eigenvalues. Finally, we demonstrate that only type I breathers participate in the development of modulation instability from small‐amplitude perturbations withing the superregular scenario, while the breathers of types II and III, belonging to the stable branch of the dispersion law, are not involved in this process.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12558</doi><tpages>42</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2526 |
ispartof | Studies in applied mathematics (Cambridge), 2023-04, Vol.150 (3), p.841-882 |
issn | 0022-2526 1467-9590 |
language | eng |
recordid | cdi_proquest_journals_2785187029 |
source | Wiley Online Library Journals Frontfile Complete; EBSCOhost Business Source Complete |
subjects | Breathers Collisions Eigenvalues integrable systems modulation instability Nonlinearity Perturbation Resonance rogue waves Schrodinger equation solitons Wave propagation |
title | Vector breathers in the Manakov system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vector%20breathers%20in%20the%20Manakov%20system&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Gelash,%20Andrey&rft.date=2023-04&rft.volume=150&rft.issue=3&rft.spage=841&rft.epage=882&rft.pages=841-882&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12558&rft_dat=%3Cproquest_cross%3E2785187029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785187029&rft_id=info:pmid/&rfr_iscdi=true |