Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate

The long‐term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant, cell and environment cell and environment, 2023-04, Vol.46 (4), p.1176-1194
Hauptverfasser: Matsunami, Maya, Murai‐Hatano, Mari, Kuwagata, Tsuneo, Matsushima, Uzuki, Hashida, Yoichi, Tominaga, Yoko, Masuya, Yusuke, Nagano, Atsushi J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1194
container_issue 4
container_start_page 1176
container_title Plant, cell and environment
container_volume 46
creator Matsunami, Maya
Murai‐Hatano, Mari
Kuwagata, Tsuneo
Matsushima, Uzuki
Hashida, Yoichi
Tominaga, Yoko
Masuya, Yusuke
Nagano, Atsushi J.
description The long‐term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated  that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage‐dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.
doi_str_mv 10.1111/pce.14439
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785184374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785184374</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4199-db3dc4f0dc55acf76606f197d29269fe2f057c7a262897137c668e9e184adbf83</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobk4v_AMS8MqLbknTJo13MuYHDBSZ1yHNx-jompq0jv17Mzu9MzeHJM95zuEF4BqjKY5n1iozxVlG-AkYY0LzhKAMnYIxwhlKGON4BC5C2CAUHxg_ByNCY1tRpGOgVl42Qfmq7dzWQL1v5LZSAToLfaUMrBrYyK738h6-m9C6JpjDnyzdl4Gy0bA0tdvBtXd9vDi_jjbYORgl3qm62srOXIIzK-tgro51Aj4eF6v5c7J8fXqZPywTlWHOE10SrTKLtMpzqSyjFFGLOdMpTym3JrUoZ4rJlKYFZ5gwRWlhuMFFJnVpCzIBt4O39e6zN6ETG9f7Jo4UKSvyyBGWRepuoOKCIXhjRevjmn4vMBKHOEWMU_zEGdmbo7Evt0b_kb_5RWA2ALuqNvv_TeJtvhiU37KDfwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785184374</pqid></control><display><type>article</type><title>Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Matsunami, Maya ; Murai‐Hatano, Mari ; Kuwagata, Tsuneo ; Matsushima, Uzuki ; Hashida, Yoichi ; Tominaga, Yoko ; Masuya, Yusuke ; Nagano, Atsushi J.</creator><creatorcontrib>Matsunami, Maya ; Murai‐Hatano, Mari ; Kuwagata, Tsuneo ; Matsushima, Uzuki ; Hashida, Yoichi ; Tominaga, Yoko ; Masuya, Yusuke ; Nagano, Atsushi J.</creatorcontrib><description>The long‐term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated  that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage‐dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.</description><identifier>ISSN: 0140-7791</identifier><identifier>EISSN: 1365-3040</identifier><identifier>DOI: 10.1111/pce.14439</identifier><identifier>PMID: 36111882</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>aquaporin ; Aquaporins ; Aquaporins - metabolism ; Climate change ; Correlation ; Evaporation ; Evaporation rate ; Gene expression ; Genes ; Leaves ; Microclimate ; Oryza - physiology ; Phosphatidylinositol 4,5-diphosphate ; Photosynthesis ; Plant Leaves - metabolism ; Plant Roots - metabolism ; potential evaporation ; Rice ; Ripening ; root ; Roots ; Transcriptome ; Transcriptomes ; Transpiration ; Water - metabolism ; Water transport</subject><ispartof>Plant, cell and environment, 2023-04, Vol.46 (4), p.1176-1194</ispartof><rights>2022 John Wiley &amp; Sons Ltd.</rights><rights>2023 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4199-db3dc4f0dc55acf76606f197d29269fe2f057c7a262897137c668e9e184adbf83</citedby><cites>FETCH-LOGICAL-c4199-db3dc4f0dc55acf76606f197d29269fe2f057c7a262897137c668e9e184adbf83</cites><orcidid>0000-0002-0257-1937 ; 0000-0001-7891-5049 ; 0000-0002-1330-0219 ; 0000-0001-6129-2308 ; 0000-0002-0239-2525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fpce.14439$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fpce.14439$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36111882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Matsunami, Maya</creatorcontrib><creatorcontrib>Murai‐Hatano, Mari</creatorcontrib><creatorcontrib>Kuwagata, Tsuneo</creatorcontrib><creatorcontrib>Matsushima, Uzuki</creatorcontrib><creatorcontrib>Hashida, Yoichi</creatorcontrib><creatorcontrib>Tominaga, Yoko</creatorcontrib><creatorcontrib>Masuya, Yusuke</creatorcontrib><creatorcontrib>Nagano, Atsushi J.</creatorcontrib><title>Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate</title><title>Plant, cell and environment</title><addtitle>Plant Cell Environ</addtitle><description>The long‐term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated  that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage‐dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.</description><subject>aquaporin</subject><subject>Aquaporins</subject><subject>Aquaporins - metabolism</subject><subject>Climate change</subject><subject>Correlation</subject><subject>Evaporation</subject><subject>Evaporation rate</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Leaves</subject><subject>Microclimate</subject><subject>Oryza - physiology</subject><subject>Phosphatidylinositol 4,5-diphosphate</subject><subject>Photosynthesis</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Roots - metabolism</subject><subject>potential evaporation</subject><subject>Rice</subject><subject>Ripening</subject><subject>root</subject><subject>Roots</subject><subject>Transcriptome</subject><subject>Transcriptomes</subject><subject>Transpiration</subject><subject>Water - metabolism</subject><subject>Water transport</subject><issn>0140-7791</issn><issn>1365-3040</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kF1LwzAUhoMobk4v_AMS8MqLbknTJo13MuYHDBSZ1yHNx-jompq0jv17Mzu9MzeHJM95zuEF4BqjKY5n1iozxVlG-AkYY0LzhKAMnYIxwhlKGON4BC5C2CAUHxg_ByNCY1tRpGOgVl42Qfmq7dzWQL1v5LZSAToLfaUMrBrYyK738h6-m9C6JpjDnyzdl4Gy0bA0tdvBtXd9vDi_jjbYORgl3qm62srOXIIzK-tgro51Aj4eF6v5c7J8fXqZPywTlWHOE10SrTKLtMpzqSyjFFGLOdMpTym3JrUoZ4rJlKYFZ5gwRWlhuMFFJnVpCzIBt4O39e6zN6ETG9f7Jo4UKSvyyBGWRepuoOKCIXhjRevjmn4vMBKHOEWMU_zEGdmbo7Evt0b_kb_5RWA2ALuqNvv_TeJtvhiU37KDfwA</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Matsunami, Maya</creator><creator>Murai‐Hatano, Mari</creator><creator>Kuwagata, Tsuneo</creator><creator>Matsushima, Uzuki</creator><creator>Hashida, Yoichi</creator><creator>Tominaga, Yoko</creator><creator>Masuya, Yusuke</creator><creator>Nagano, Atsushi J.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0257-1937</orcidid><orcidid>https://orcid.org/0000-0001-7891-5049</orcidid><orcidid>https://orcid.org/0000-0002-1330-0219</orcidid><orcidid>https://orcid.org/0000-0001-6129-2308</orcidid><orcidid>https://orcid.org/0000-0002-0239-2525</orcidid></search><sort><creationdate>202304</creationdate><title>Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate</title><author>Matsunami, Maya ; Murai‐Hatano, Mari ; Kuwagata, Tsuneo ; Matsushima, Uzuki ; Hashida, Yoichi ; Tominaga, Yoko ; Masuya, Yusuke ; Nagano, Atsushi J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4199-db3dc4f0dc55acf76606f197d29269fe2f057c7a262897137c668e9e184adbf83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aquaporin</topic><topic>Aquaporins</topic><topic>Aquaporins - metabolism</topic><topic>Climate change</topic><topic>Correlation</topic><topic>Evaporation</topic><topic>Evaporation rate</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Leaves</topic><topic>Microclimate</topic><topic>Oryza - physiology</topic><topic>Phosphatidylinositol 4,5-diphosphate</topic><topic>Photosynthesis</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Roots - metabolism</topic><topic>potential evaporation</topic><topic>Rice</topic><topic>Ripening</topic><topic>root</topic><topic>Roots</topic><topic>Transcriptome</topic><topic>Transcriptomes</topic><topic>Transpiration</topic><topic>Water - metabolism</topic><topic>Water transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matsunami, Maya</creatorcontrib><creatorcontrib>Murai‐Hatano, Mari</creatorcontrib><creatorcontrib>Kuwagata, Tsuneo</creatorcontrib><creatorcontrib>Matsushima, Uzuki</creatorcontrib><creatorcontrib>Hashida, Yoichi</creatorcontrib><creatorcontrib>Tominaga, Yoko</creatorcontrib><creatorcontrib>Masuya, Yusuke</creatorcontrib><creatorcontrib>Nagano, Atsushi J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Plant, cell and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matsunami, Maya</au><au>Murai‐Hatano, Mari</au><au>Kuwagata, Tsuneo</au><au>Matsushima, Uzuki</au><au>Hashida, Yoichi</au><au>Tominaga, Yoko</au><au>Masuya, Yusuke</au><au>Nagano, Atsushi J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate</atitle><jtitle>Plant, cell and environment</jtitle><addtitle>Plant Cell Environ</addtitle><date>2023-04</date><risdate>2023</risdate><volume>46</volume><issue>4</issue><spage>1176</spage><epage>1194</epage><pages>1176-1194</pages><issn>0140-7791</issn><eissn>1365-3040</eissn><abstract>The long‐term dynamics of the transcriptome under natural field conditions remain unclear. We conducted comprehensive gene expression analyses of rice leaves and roots grown under natural field conditions for a long period, from the tillering stage to the ripening stage. In this experiment, changes in the transcriptome were captured in relation to microclimatic parameters, particularly potential evaporation (Ep), which is a multiple meteorological factor and acts as an indicator of transpirational demand. The results indicated  that many genes were regulated by changes in temperature and Ep in both leaves and roots. Furthermore, the correlation between gene expression and meteorological factors differed significantly between the vegetative and reproductive stages. Since Ep triggers transpiration, we analyzed aquaporin gene expression, which is responsible for water transport, and found that many aquaporin genes in leaves were positively correlated with Ep throughout the growth period, whereas in roots, two plasma membrane intrinsic aquaporins, PIP2;4 and PIP2;5 were strongly correlated with Ep during reproductive growth. Other genes closely related to productivity, such as those involved in nutrient absorption and photosynthesis, exhibited different responses to meteorological factors at different growth stages. The stage‐dependent shift in the microclimate response provides an important perspective on crop physiology in light of climate change.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36111882</pmid><doi>10.1111/pce.14439</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-0257-1937</orcidid><orcidid>https://orcid.org/0000-0001-7891-5049</orcidid><orcidid>https://orcid.org/0000-0002-1330-0219</orcidid><orcidid>https://orcid.org/0000-0001-6129-2308</orcidid><orcidid>https://orcid.org/0000-0002-0239-2525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0140-7791
ispartof Plant, cell and environment, 2023-04, Vol.46 (4), p.1176-1194
issn 0140-7791
1365-3040
language eng
recordid cdi_proquest_journals_2785184374
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects aquaporin
Aquaporins
Aquaporins - metabolism
Climate change
Correlation
Evaporation
Evaporation rate
Gene expression
Genes
Leaves
Microclimate
Oryza - physiology
Phosphatidylinositol 4,5-diphosphate
Photosynthesis
Plant Leaves - metabolism
Plant Roots - metabolism
potential evaporation
Rice
Ripening
root
Roots
Transcriptome
Transcriptomes
Transpiration
Water - metabolism
Water transport
title Transcriptome dynamics of rice in natura: Response of above and below ground organs to microclimate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20dynamics%20of%20rice%20in%20natura:%20Response%20of%20above%20and%20below%20ground%20organs%20to%20microclimate&rft.jtitle=Plant,%20cell%20and%20environment&rft.au=Matsunami,%20Maya&rft.date=2023-04&rft.volume=46&rft.issue=4&rft.spage=1176&rft.epage=1194&rft.pages=1176-1194&rft.issn=0140-7791&rft.eissn=1365-3040&rft_id=info:doi/10.1111/pce.14439&rft_dat=%3Cproquest_cross%3E2785184374%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785184374&rft_id=info:pmid/36111882&rfr_iscdi=true