Design of discrete PID controllers for maximizing stability margins

The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2023-03, Vol.25 (2), p.824-839
Hauptverfasser: Guo, Tong‐Yi, Hwang, Chyi, Lu, Li‐Shin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 839
container_issue 2
container_start_page 824
container_title Asian journal of control
container_volume 25
creator Guo, Tong‐Yi
Hwang, Chyi
Lu, Li‐Shin
description The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficient algorithm is developed for testing if, for a given plant, there exists a digital PID controller gain parameter space corresponding to closed‐loop poles being inside the circle of radius ρ centered at the origin. The developed algorithm is finally applied along with a bisection strategy to determine, for a specified small positive number ε, a minimum value ρε* and the corresponding ρε*−stabilizing discrete PID controller set for achieving at least 1−ρε* of stability margin. To illustrate the features of our new characterization of stabilizing digital PID controller sets and the effectiveness of the presented algorithms to the maximum stability‐margin discrete PID controller design, two numerical examples are provided.
doi_str_mv 10.1002/asjc.2940
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785168697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785168697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2970-c7e0a2a214fd4cff5dc1e42735efdd4bfaa6b0d9f7f1584e0546d893e7eae2b33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtk2yS3T2WrR-VgoJ6DtlkUlK2m5ps0frr3VqvnmYYnpl5eRC6pmRCCWFTndZmwipOTtCIVjnPJKny06EXkmalZOIcXaS0JkTSvBQjVM8h-VWHg8PWJxOhB_yymGMTuj6GtoWYsAsRb_SX3_hv361w6nXjW9_vh2Fc-S5dojOn2wRXf3WM3u_v3urHbPn8sKhny8ywqiCZKYBophnlznLjnLCGAmdFLsBZyxuntWyIrVzhqCg5EMGlLascCtDAmjwfo5vj3W0MHztIvVqHXeyGl4oVpaCylFUxULdHysSQUgSnttEPSfeKEnVwpA6O1MHRwE6P7KdvYf8_qGavT_Xvxg8xRmmn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785168697</pqid></control><display><type>article</type><title>Design of discrete PID controllers for maximizing stability margins</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Guo, Tong‐Yi ; Hwang, Chyi ; Lu, Li‐Shin</creator><creatorcontrib>Guo, Tong‐Yi ; Hwang, Chyi ; Lu, Li‐Shin</creatorcontrib><description>The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficient algorithm is developed for testing if, for a given plant, there exists a digital PID controller gain parameter space corresponding to closed‐loop poles being inside the circle of radius ρ centered at the origin. The developed algorithm is finally applied along with a bisection strategy to determine, for a specified small positive number ε, a minimum value ρε* and the corresponding ρε*−stabilizing discrete PID controller set for achieving at least 1−ρε* of stability margin. To illustrate the features of our new characterization of stabilizing digital PID controller sets and the effectiveness of the presented algorithms to the maximum stability‐margin discrete PID controller design, two numerical examples are provided.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.2940</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Control systems design ; Controllers ; digital PID ; discrete‐time systems ; D‐partition theory ; Maximization ; maximum stability margin ; Optimization ; Proportional integral derivative ; stabilizing controller set</subject><ispartof>Asian journal of control, 2023-03, Vol.25 (2), p.824-839</ispartof><rights>2022 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd.</rights><rights>2023 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2970-c7e0a2a214fd4cff5dc1e42735efdd4bfaa6b0d9f7f1584e0546d893e7eae2b33</citedby><cites>FETCH-LOGICAL-c2970-c7e0a2a214fd4cff5dc1e42735efdd4bfaa6b0d9f7f1584e0546d893e7eae2b33</cites><orcidid>0000-0003-0674-2075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.2940$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.2940$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Guo, Tong‐Yi</creatorcontrib><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Lu, Li‐Shin</creatorcontrib><title>Design of discrete PID controllers for maximizing stability margins</title><title>Asian journal of control</title><description>The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficient algorithm is developed for testing if, for a given plant, there exists a digital PID controller gain parameter space corresponding to closed‐loop poles being inside the circle of radius ρ centered at the origin. The developed algorithm is finally applied along with a bisection strategy to determine, for a specified small positive number ε, a minimum value ρε* and the corresponding ρε*−stabilizing discrete PID controller set for achieving at least 1−ρε* of stability margin. To illustrate the features of our new characterization of stabilizing digital PID controller sets and the effectiveness of the presented algorithms to the maximum stability‐margin discrete PID controller design, two numerical examples are provided.</description><subject>Algorithms</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>digital PID</subject><subject>discrete‐time systems</subject><subject>D‐partition theory</subject><subject>Maximization</subject><subject>maximum stability margin</subject><subject>Optimization</subject><subject>Proportional integral derivative</subject><subject>stabilizing controller set</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKsH_0HAk4dtk2yS3T2WrR-VgoJ6DtlkUlK2m5ps0frr3VqvnmYYnpl5eRC6pmRCCWFTndZmwipOTtCIVjnPJKny06EXkmalZOIcXaS0JkTSvBQjVM8h-VWHg8PWJxOhB_yymGMTuj6GtoWYsAsRb_SX3_hv361w6nXjW9_vh2Fc-S5dojOn2wRXf3WM3u_v3urHbPn8sKhny8ywqiCZKYBophnlznLjnLCGAmdFLsBZyxuntWyIrVzhqCg5EMGlLascCtDAmjwfo5vj3W0MHztIvVqHXeyGl4oVpaCylFUxULdHysSQUgSnttEPSfeKEnVwpA6O1MHRwE6P7KdvYf8_qGavT_Xvxg8xRmmn</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Guo, Tong‐Yi</creator><creator>Hwang, Chyi</creator><creator>Lu, Li‐Shin</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-0674-2075</orcidid></search><sort><creationdate>202303</creationdate><title>Design of discrete PID controllers for maximizing stability margins</title><author>Guo, Tong‐Yi ; Hwang, Chyi ; Lu, Li‐Shin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2970-c7e0a2a214fd4cff5dc1e42735efdd4bfaa6b0d9f7f1584e0546d893e7eae2b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>digital PID</topic><topic>discrete‐time systems</topic><topic>D‐partition theory</topic><topic>Maximization</topic><topic>maximum stability margin</topic><topic>Optimization</topic><topic>Proportional integral derivative</topic><topic>stabilizing controller set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Tong‐Yi</creatorcontrib><creatorcontrib>Hwang, Chyi</creatorcontrib><creatorcontrib>Lu, Li‐Shin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Tong‐Yi</au><au>Hwang, Chyi</au><au>Lu, Li‐Shin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of discrete PID controllers for maximizing stability margins</atitle><jtitle>Asian journal of control</jtitle><date>2023-03</date><risdate>2023</risdate><volume>25</volume><issue>2</issue><spage>824</spage><epage>839</epage><pages>824-839</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>The objective of this paper is to provide a discrete PID controller design procedure for maximizing stability margins. First, a new and complete characterization of the entire set of stabilizing discrete PID controllers for a given plant is presented. Then, based on this characterization, an efficient algorithm is developed for testing if, for a given plant, there exists a digital PID controller gain parameter space corresponding to closed‐loop poles being inside the circle of radius ρ centered at the origin. The developed algorithm is finally applied along with a bisection strategy to determine, for a specified small positive number ε, a minimum value ρε* and the corresponding ρε*−stabilizing discrete PID controller set for achieving at least 1−ρε* of stability margin. To illustrate the features of our new characterization of stabilizing digital PID controller sets and the effectiveness of the presented algorithms to the maximum stability‐margin discrete PID controller design, two numerical examples are provided.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/asjc.2940</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0674-2075</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2023-03, Vol.25 (2), p.824-839
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_2785168697
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Control systems design
Controllers
digital PID
discrete‐time systems
D‐partition theory
Maximization
maximum stability margin
Optimization
Proportional integral derivative
stabilizing controller set
title Design of discrete PID controllers for maximizing stability margins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T18%3A57%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20discrete%20PID%20controllers%20for%20maximizing%20stability%20margins&rft.jtitle=Asian%20journal%20of%20control&rft.au=Guo,%20Tong%E2%80%90Yi&rft.date=2023-03&rft.volume=25&rft.issue=2&rft.spage=824&rft.epage=839&rft.pages=824-839&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.2940&rft_dat=%3Cproquest_cross%3E2785168697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785168697&rft_id=info:pmid/&rfr_iscdi=true