ExplainFix: Explainable spatially fixed deep networks
Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only f...
Gespeichert in:
Veröffentlicht in: | Wiley interdisciplinary reviews. Data mining and knowledge discovery 2023-03, Vol.13 (2), p.e1483-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e1483 |
container_title | Wiley interdisciplinary reviews. Data mining and knowledge discovery |
container_volume | 13 |
creator | Gaudio, Alex Faloutsos, Christos Smailagic, Asim Costa, Pedro Campilho, Aurélio |
description | Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned.
This article is categorized under:
Technologies > Machine Learning
Fundamental Concepts of Data and Knowledge > Explainable AI
Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining
ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning. |
doi_str_mv | 10.1002/widm.1483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785088361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785088361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsNQe_AcBTx7S7kc-Nt6ktlqoeFE8Lvsxga1pEndTkvx7E1O8OZd5GZ6ZgQehW4KXBGO6aq05LknE2QWakSyiYZRm8eVf5uk1Wnh_wEMxyjmnMxRvurqQttza7iE4Z6kKCHwtGyuLog9y24EJDEAdlNC0lfvyN-gql4WHxbnP0cd2875-Cfdvz7v14z7UjFEWKkw4i5RKtKSQZzgBqonWhGMgkjBswCiWUk7TKM6HoTIJi2mkdI6VinHK5uhuulu76vsEvhGH6uTK4aWgKY8x5ywhA3U_UdpV3jvIRe3sUbpeECxGMWIUI0YxA7ua2NYW0P8Pis_d0-vvxg_SjGQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785088361</pqid></control><display><type>article</type><title>ExplainFix: Explainable spatially fixed deep networks</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</creator><creatorcontrib>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</creatorcontrib><description>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned.
This article is categorized under:
Technologies > Machine Learning
Fundamental Concepts of Data and Knowledge > Explainable AI
Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining
ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1483</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Accuracy ; Artificial neural networks ; computer vision ; Data mining ; deep learning ; Empirical analysis ; explainability ; fixed‐weight networks ; Learning ; Matching ; Mathematical models ; medical image analysis ; Medical imaging ; Neural networks ; Parameters ; Performance prediction ; Principles ; pruning ; Robustness ; Spatial filtering</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-03, Vol.13 (2), p.e1483-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</citedby><cites>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</cites><orcidid>0000-0003-1380-6620 ; 0000-0002-5317-6275 ; 0000-0003-2996-9790 ; 0000-0002-9528-1292 ; 0000-0001-8524-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1483$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1483$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gaudio, Alex</creatorcontrib><creatorcontrib>Faloutsos, Christos</creatorcontrib><creatorcontrib>Smailagic, Asim</creatorcontrib><creatorcontrib>Costa, Pedro</creatorcontrib><creatorcontrib>Campilho, Aurélio</creatorcontrib><title>ExplainFix: Explainable spatially fixed deep networks</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned.
This article is categorized under:
Technologies > Machine Learning
Fundamental Concepts of Data and Knowledge > Explainable AI
Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining
ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>computer vision</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Empirical analysis</subject><subject>explainability</subject><subject>fixed‐weight networks</subject><subject>Learning</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>medical image analysis</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Principles</subject><subject>pruning</subject><subject>Robustness</subject><subject>Spatial filtering</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1Lw0AQhhdRsNQe_AcBTx7S7kc-Nt6ktlqoeFE8Lvsxga1pEndTkvx7E1O8OZd5GZ6ZgQehW4KXBGO6aq05LknE2QWakSyiYZRm8eVf5uk1Wnh_wEMxyjmnMxRvurqQttza7iE4Z6kKCHwtGyuLog9y24EJDEAdlNC0lfvyN-gql4WHxbnP0cd2875-Cfdvz7v14z7UjFEWKkw4i5RKtKSQZzgBqonWhGMgkjBswCiWUk7TKM6HoTIJi2mkdI6VinHK5uhuulu76vsEvhGH6uTK4aWgKY8x5ywhA3U_UdpV3jvIRe3sUbpeECxGMWIUI0YxA7ua2NYW0P8Pis_d0-vvxg_SjGQ0</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gaudio, Alex</creator><creator>Faloutsos, Christos</creator><creator>Smailagic, Asim</creator><creator>Costa, Pedro</creator><creator>Campilho, Aurélio</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1380-6620</orcidid><orcidid>https://orcid.org/0000-0002-5317-6275</orcidid><orcidid>https://orcid.org/0000-0003-2996-9790</orcidid><orcidid>https://orcid.org/0000-0002-9528-1292</orcidid><orcidid>https://orcid.org/0000-0001-8524-997X</orcidid></search><sort><creationdate>202303</creationdate><title>ExplainFix: Explainable spatially fixed deep networks</title><author>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>computer vision</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Empirical analysis</topic><topic>explainability</topic><topic>fixed‐weight networks</topic><topic>Learning</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>medical image analysis</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Principles</topic><topic>pruning</topic><topic>Robustness</topic><topic>Spatial filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudio, Alex</creatorcontrib><creatorcontrib>Faloutsos, Christos</creatorcontrib><creatorcontrib>Smailagic, Asim</creatorcontrib><creatorcontrib>Costa, Pedro</creatorcontrib><creatorcontrib>Campilho, Aurélio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudio, Alex</au><au>Faloutsos, Christos</au><au>Smailagic, Asim</au><au>Costa, Pedro</au><au>Campilho, Aurélio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ExplainFix: Explainable spatially fixed deep networks</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2023-03</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>e1483</spage><epage>n/a</epage><pages>e1483-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned.
This article is categorized under:
Technologies > Machine Learning
Fundamental Concepts of Data and Knowledge > Explainable AI
Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining
ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1483</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1380-6620</orcidid><orcidid>https://orcid.org/0000-0002-5317-6275</orcidid><orcidid>https://orcid.org/0000-0003-2996-9790</orcidid><orcidid>https://orcid.org/0000-0002-9528-1292</orcidid><orcidid>https://orcid.org/0000-0001-8524-997X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-4787 |
ispartof | Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-03, Vol.13 (2), p.e1483-n/a |
issn | 1942-4787 1942-4795 |
language | eng |
recordid | cdi_proquest_journals_2785088361 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Accuracy Artificial neural networks computer vision Data mining deep learning Empirical analysis explainability fixed‐weight networks Learning Matching Mathematical models medical image analysis Medical imaging Neural networks Parameters Performance prediction Principles pruning Robustness Spatial filtering |
title | ExplainFix: Explainable spatially fixed deep networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ExplainFix:%20Explainable%20spatially%20fixed%20deep%20networks&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Gaudio,%20Alex&rft.date=2023-03&rft.volume=13&rft.issue=2&rft.spage=e1483&rft.epage=n/a&rft.pages=e1483-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1483&rft_dat=%3Cproquest_cross%3E2785088361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785088361&rft_id=info:pmid/&rfr_iscdi=true |