ExplainFix: Explainable spatially fixed deep networks

Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Data mining and knowledge discovery 2023-03, Vol.13 (2), p.e1483-n/a
Hauptverfasser: Gaudio, Alex, Faloutsos, Christos, Smailagic, Asim, Costa, Pedro, Campilho, Aurélio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page e1483
container_title Wiley interdisciplinary reviews. Data mining and knowledge discovery
container_volume 13
creator Gaudio, Alex
Faloutsos, Christos
Smailagic, Asim
Costa, Pedro
Campilho, Aurélio
description Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned. This article is categorized under: Technologies > Machine Learning Fundamental Concepts of Data and Knowledge > Explainable AI Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.
doi_str_mv 10.1002/widm.1483
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2785088361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2785088361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsNQe_AcBTx7S7kc-Nt6ktlqoeFE8Lvsxga1pEndTkvx7E1O8OZd5GZ6ZgQehW4KXBGO6aq05LknE2QWakSyiYZRm8eVf5uk1Wnh_wEMxyjmnMxRvurqQttza7iE4Z6kKCHwtGyuLog9y24EJDEAdlNC0lfvyN-gql4WHxbnP0cd2875-Cfdvz7v14z7UjFEWKkw4i5RKtKSQZzgBqonWhGMgkjBswCiWUk7TKM6HoTIJi2mkdI6VinHK5uhuulu76vsEvhGH6uTK4aWgKY8x5ywhA3U_UdpV3jvIRe3sUbpeECxGMWIUI0YxA7ua2NYW0P8Pis_d0-vvxg_SjGQ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785088361</pqid></control><display><type>article</type><title>ExplainFix: Explainable spatially fixed deep networks</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</creator><creatorcontrib>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</creatorcontrib><description>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned. This article is categorized under: Technologies &gt; Machine Learning Fundamental Concepts of Data and Knowledge &gt; Explainable AI Fundamental Concepts of Data and Knowledge &gt; Key Design Issues in Data Mining ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</description><identifier>ISSN: 1942-4787</identifier><identifier>EISSN: 1942-4795</identifier><identifier>DOI: 10.1002/widm.1483</identifier><language>eng</language><publisher>Hoboken, USA: Wiley Periodicals, Inc</publisher><subject>Accuracy ; Artificial neural networks ; computer vision ; Data mining ; deep learning ; Empirical analysis ; explainability ; fixed‐weight networks ; Learning ; Matching ; Mathematical models ; medical image analysis ; Medical imaging ; Neural networks ; Parameters ; Performance prediction ; Principles ; pruning ; Robustness ; Spatial filtering</subject><ispartof>Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-03, Vol.13 (2), p.e1483-n/a</ispartof><rights>2022 The Authors. published by Wiley Periodicals LLC.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</citedby><cites>FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</cites><orcidid>0000-0003-1380-6620 ; 0000-0002-5317-6275 ; 0000-0003-2996-9790 ; 0000-0002-9528-1292 ; 0000-0001-8524-997X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwidm.1483$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwidm.1483$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gaudio, Alex</creatorcontrib><creatorcontrib>Faloutsos, Christos</creatorcontrib><creatorcontrib>Smailagic, Asim</creatorcontrib><creatorcontrib>Costa, Pedro</creatorcontrib><creatorcontrib>Campilho, Aurélio</creatorcontrib><title>ExplainFix: Explainable spatially fixed deep networks</title><title>Wiley interdisciplinary reviews. Data mining and knowledge discovery</title><description>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned. This article is categorized under: Technologies &gt; Machine Learning Fundamental Concepts of Data and Knowledge &gt; Explainable AI Fundamental Concepts of Data and Knowledge &gt; Key Design Issues in Data Mining ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>computer vision</subject><subject>Data mining</subject><subject>deep learning</subject><subject>Empirical analysis</subject><subject>explainability</subject><subject>fixed‐weight networks</subject><subject>Learning</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>medical image analysis</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>Parameters</subject><subject>Performance prediction</subject><subject>Principles</subject><subject>pruning</subject><subject>Robustness</subject><subject>Spatial filtering</subject><issn>1942-4787</issn><issn>1942-4795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1Lw0AQhhdRsNQe_AcBTx7S7kc-Nt6ktlqoeFE8Lvsxga1pEndTkvx7E1O8OZd5GZ6ZgQehW4KXBGO6aq05LknE2QWakSyiYZRm8eVf5uk1Wnh_wEMxyjmnMxRvurqQttza7iE4Z6kKCHwtGyuLog9y24EJDEAdlNC0lfvyN-gql4WHxbnP0cd2875-Cfdvz7v14z7UjFEWKkw4i5RKtKSQZzgBqonWhGMgkjBswCiWUk7TKM6HoTIJi2mkdI6VinHK5uhuulu76vsEvhGH6uTK4aWgKY8x5ywhA3U_UdpV3jvIRe3sUbpeECxGMWIUI0YxA7ua2NYW0P8Pis_d0-vvxg_SjGQ0</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gaudio, Alex</creator><creator>Faloutsos, Christos</creator><creator>Smailagic, Asim</creator><creator>Costa, Pedro</creator><creator>Campilho, Aurélio</creator><general>Wiley Periodicals, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1380-6620</orcidid><orcidid>https://orcid.org/0000-0002-5317-6275</orcidid><orcidid>https://orcid.org/0000-0003-2996-9790</orcidid><orcidid>https://orcid.org/0000-0002-9528-1292</orcidid><orcidid>https://orcid.org/0000-0001-8524-997X</orcidid></search><sort><creationdate>202303</creationdate><title>ExplainFix: Explainable spatially fixed deep networks</title><author>Gaudio, Alex ; Faloutsos, Christos ; Smailagic, Asim ; Costa, Pedro ; Campilho, Aurélio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3323-b01834bb6ca2ef906e2c1cc180e1a130dedb37282745f80ebd63524bcf0bb5073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>computer vision</topic><topic>Data mining</topic><topic>deep learning</topic><topic>Empirical analysis</topic><topic>explainability</topic><topic>fixed‐weight networks</topic><topic>Learning</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>medical image analysis</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>Parameters</topic><topic>Performance prediction</topic><topic>Principles</topic><topic>pruning</topic><topic>Robustness</topic><topic>Spatial filtering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaudio, Alex</creatorcontrib><creatorcontrib>Faloutsos, Christos</creatorcontrib><creatorcontrib>Smailagic, Asim</creatorcontrib><creatorcontrib>Costa, Pedro</creatorcontrib><creatorcontrib>Campilho, Aurélio</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaudio, Alex</au><au>Faloutsos, Christos</au><au>Smailagic, Asim</au><au>Costa, Pedro</au><au>Campilho, Aurélio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ExplainFix: Explainable spatially fixed deep networks</atitle><jtitle>Wiley interdisciplinary reviews. Data mining and knowledge discovery</jtitle><date>2023-03</date><risdate>2023</risdate><volume>13</volume><issue>2</issue><spage>e1483</spage><epage>n/a</epage><pages>e1483-n/a</pages><issn>1942-4787</issn><eissn>1942-4795</eissn><abstract>Is there an initialization for deep networks that requires no learning? ExplainFix adopts two design principles: the “fixed filters” principle that all spatial filter weights of convolutional neural networks can be fixed at initialization and never learned, and the “nimbleness” principle that only few network parameters suffice. We contribute (a) visual model‐based explanations, (b) speed and accuracy gains, and (c) novel tools for deep convolutional neural networks. ExplainFix gives key insights that spatially fixed networks should have a steered initialization, that spatial convolution layers tend to prioritize low frequencies, and that most network parameters are not necessary in spatially fixed models. ExplainFix models have up to ×100 fewer spatial filter kernels than fully learned models and matching or improved accuracy. Our extensive empirical analysis confirms that ExplainFix guarantees nimbler models (train up to 17% faster with channel pruning), matching or improved predictive performance (spanning 13 distinct baseline models, four architectures and two medical image datasets), improved robustness to larger learning rate, and robustness to varying model size. We are first to demonstrate that all spatial filters in state‐of‐the‐art convolutional deep networks can be fixed at initialization, not learned. This article is categorized under: Technologies &gt; Machine Learning Fundamental Concepts of Data and Knowledge &gt; Explainable AI Fundamental Concepts of Data and Knowledge &gt; Key Design Issues in Data Mining ExplainFix contributes visual model‐based explanations and novel tools for deep convolutional neural networks to improve their speed and accuracy with fixed, not‐learned spatial convolution parameters and channel pruning.</abstract><cop>Hoboken, USA</cop><pub>Wiley Periodicals, Inc</pub><doi>10.1002/widm.1483</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1380-6620</orcidid><orcidid>https://orcid.org/0000-0002-5317-6275</orcidid><orcidid>https://orcid.org/0000-0003-2996-9790</orcidid><orcidid>https://orcid.org/0000-0002-9528-1292</orcidid><orcidid>https://orcid.org/0000-0001-8524-997X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-4787
ispartof Wiley interdisciplinary reviews. Data mining and knowledge discovery, 2023-03, Vol.13 (2), p.e1483-n/a
issn 1942-4787
1942-4795
language eng
recordid cdi_proquest_journals_2785088361
source Wiley Online Library - AutoHoldings Journals
subjects Accuracy
Artificial neural networks
computer vision
Data mining
deep learning
Empirical analysis
explainability
fixed‐weight networks
Learning
Matching
Mathematical models
medical image analysis
Medical imaging
Neural networks
Parameters
Performance prediction
Principles
pruning
Robustness
Spatial filtering
title ExplainFix: Explainable spatially fixed deep networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A47%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ExplainFix:%20Explainable%20spatially%20fixed%20deep%20networks&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Data%20mining%20and%20knowledge%20discovery&rft.au=Gaudio,%20Alex&rft.date=2023-03&rft.volume=13&rft.issue=2&rft.spage=e1483&rft.epage=n/a&rft.pages=e1483-n/a&rft.issn=1942-4787&rft.eissn=1942-4795&rft_id=info:doi/10.1002/widm.1483&rft_dat=%3Cproquest_cross%3E2785088361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785088361&rft_id=info:pmid/&rfr_iscdi=true